保管用 屋内専用

R X 7 O O R GR型受信機

施工説明書

＜品 番 $>$ NBS529AEロロ／NBS529BEロロ（口口は感知器伝送系統数）

統	382 アドレス	－4系統	636 アドレス
－6系統	1018 アドレス	－8系統	1272 アドレス
－12系統	1908 アドレス	－16 6	25

＜国家検定型式番号＞受第2019～21号

施エされる前に

- 正しく施工するために必ずお読みください。
- 施工するには，電気工事士•消防設備士（甲種第 4 類）•火災報知システム専門技術者の資格が必要です。
- 施工後，必ず施主様に商品説明をしていただき，取扱説明書と施工説明書をお渡しください。
- 万ー，施工説明書にしたがわず施工された場合の事故や故障などについては責任を負いかねることがあります。
- 火災・ガス漏れなどによる傷害については責任を負い兼ねますのでご了承ください。

警告

－受信機の表面が汚れた場合，水をつけたり・水をかけたりして汚れを落とさないでくだ さい。感電•故障の原因となります。
（詳しくは取扱説明書の「5．お手入れ方法」） を参照してください。

安全上のご注意

必ずお守りください

人への危害，財産の損害を防止するため，必ずお守わいただくことを説明しています。

■誤った使い方をしたときに生じる危害や物的損害の程度を区分して，説明しています。

〔警告

「死亡や重傷を負うおそれがある内容」です。

注意

「傷害を負うことや，財産の損害が発生するおそれがある内容」です。

お守りいただく内容を次の図記号で説明しています。 （次は図記号の例です。）

	してはいけない 内容です。

（！	実行しなければならない 内容です。

今警告

－W 機器を分解したり，修理•改造はしない。

感電•故障の原因となります。
分解慗止
電源（AC100V）を切り，予備電源用の電池を取りはずした状態で施工する。
活線工事は感電や発熱•故障の原因となります。
施工説明書にしたがい，その質量に十分耐えるように，または転倒しないように強固に取り付ける。
安易な取り付けは脱落•転倒によるケガの原因となります。
AC100V専用です。接続前に入力電圧の確認をする。
AC100V以外の電圧では発火•発熱の原因となります。
AC100V用電源端子は確実に締め付ける。
綸め付けが不十分な場合，発熱するおそれがあり，火災や焼損の原因となります。
ヒューズ交換は電源（ACIOOV）および電源スイッチを切った状態で行う。電源を切らないと，感電の原因となります。
電池は必す接続する。
電池を接続していないと停電時に機能しません。
AC100V端子の電源端子カバーは工事終了後，必す取り付ける。感電の原因となります。

	水や雨のかかる場所（屋外など）および湿気の多い場所（給湯室など）には設置しない。感電•故障の原因となります。
	小勢力端子にAC100V用電源線を接続しない。発火•発煙の原因となります。
	ぬれた手で受信機をさわったり，水をつけたり，水をかけたりしない。感電•故障の原因となります。

介注意			
	アースの接続は確実に行う。使用時や漏電のときに感電する おそれがあります。		据付作業は落下•転倒防止の ため，必ず2人以上で作業する。

この商品は屋内専用です。屋外•屋側には設置しないでください。
－接続機器については，その商品に付属の説明書をよくお読みください。

地区音響装置接続時のご注意

必ず受信機の地区音響装置接続容量以内で，ご使用ください。
－建物のリニューアル時などで受信機を交換する場合は下記内容にご注意 ください。
1．地区音響装置の駆動方式が電磁式でないことを確認してください。
2．地区音響装置が他社製の場合は，地区音響装置のメーカーに駆動方式が電磁式でないことを確認してください。
※電磁式の場合は，受信機の内部回路を破壊するおそれがあります。

■次のような場所には設置しないでください。 （誤動作•故障の原因となります。）

- 直射日光のあたる場所
- 水滴，蒸気，ホコリなどがかかる場所
- 周辺に操作上支障となる障害物のある場所
- 衝撃，振動などの影響を受ける場所
- 常に人がいなくて様子を確かめられ ない場所
- 薬品などのガスが発生する場所
- 強電界やノイズの発生する場所

施工時のご注意

－受信機の電源（AC100V）は専用電源（専用ブレ一カ）を使用してください。
（専用ブレ一カには付属品の開閉器用ラベルを貼ってください）

- 電源（AC100V）配線はハンダ上げ電線を使用しないでください。
- 電線接続部は圧着スリーブなどで行い，絶縁処理をしてください。
（電線をよじっただけでは，長期使用中に電線表面が酸化接触不良をおこし誤動作の原因となります）
－工事，施工時のゴミなどは機器の中に残さないでください。
（ショートや故障の原因になります）
－電源（AC100V）を切り予備電源を取り外した状態で施工してください。
活線工事は感電や発熱，故障の原因となります。
- 電線のしめつけが不十分な場合，発熱する恐れがありますので確実にしめつけてください。
- 強電ライン・AC100V配線と小勢力配線はできる限り離して施工してください。
（強電ライン・AC100V配線が小勢力配線の近くにあると誤動作の原因となります）
－接続方法に示す機器以外の機器を接続する場合には，当社にご相談ください。 （不適切な接続は誤作動•故障の原因になります）
－アースは必ず接続してください。
（D種（第3種）接地相当以上（ 100Ω 以下）としてください）

- 受信機の扉を開いた状態で，盤内部付近で無線機を使用しないでください。
- RXアドレスアダプタ（NCH576EX）を接続したときは，2次側の感知器配線にRXアドレスアダプタに付属の終端器を取り付け，終端器ラベル（ RXアドレスアダプタに付属）を貼り付けてください。
- 蓄積型感知器及び蓄積式中継器は接続できません。
- RXアドレスアダプタ（NCH576EX）2次側の感知器には火災表示灯2型（パナソニック株製BV94O2）は接続できません。
－施工する前に，必ず，「6．伝送線について」に記載の線路条件や注意事項をご確認ください。線路条件に適合しない電線の使用や規定外の配線方法は絶対に行わないでください。伝送トラブルの原因となります
－感知器伝送線，中継器伝送線の結線に関して，結線誤りによる下記の接続はお避けください。
機器破損の原因となります。
－違う系統の感知器伝送線［SA＊，SB＊］同士の接続
（例）感知器伝送線1系統［SA1，SB1］と，2系統［SA2，SB2］を接続 －違う系統の中継器伝送線 $[N A *, N B *]$ 同士の接続
（例）中継器伝送線1系統［NA1，NB1］と，2系統［NA2，NB2］を接続
- 感知器伝送線［SA＊，SB＊］と，中継器伝送線［ $N A *, N B *$ ］の接続
- 中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。

付属品

- 受信機付属品
- 取り付け用部品 工事用 1セット
（ヒューズ・開閉器用ラベル・移報端子ご注意ラベル・諸警報地区窓名称ラベル・プリンタ用紙）
－予備品 保管用 1セット
（ヒューズ抜差エ具・ヒューズ）
－自火報電話機
2台
－取扱説明書
1冊
－施工説明書
1冊（本書）
－取扱いラベル
1枚
（受信機前面ブランク部に貼り付けてください）

MEMO

安全上のご注意		
施エ上のご注意		
付属品		
1．概要	．．．．．	1～4
1－1．商品概要	．	1
1－2．システム構成図	－${ }^{\text {a }}$	$2 \sim 3$
1－3．連動テーブル上の管理アドレスと端末の設定アドレスについて	．\cdot ．	4
2．取付方法	．	5～10
2－1．壁掛型の場合	．．．．．	$5 \sim 6$
2－2．自立型の場合	\cdots	$7 \sim 9$
2－3．盤の設置についてのお願い	$\cdots \cdot$	10
3．機器の設定	．．．．．	12～17
3－1．受信機に連動テーブルやPX端末情報を登録する方法	\cdots	12
3－2．連動テーブルを転送する方法（SDカード \Rightarrow 受信機）	．\cdot ．	13
3－3．PX端末のアドレスを登録する方法	\cdots	14
3－4．PX端末のメッセージファイルを受信機に読み込む方法 （SDカード \Rightarrow 受信機）	．\cdot ．	15
3－5．PX端末のメッセージファイルをSDカードに書き込む方法 （受信機＝SDカード）	$\cdots \cdot$	16
3－6．受信機の各種履歴情報をSDカードに書き込む方法 （受信機 \Rightarrow SDカード）	．\cdot ．	17
4．受信機内器構成	．	18～31
4－1．内器配置図	．．．．．	$18 \sim 21$
4－2．ブロック図	－	22
4－3．端子定格	．	23～30
4－4．受信機ヒューズー覧	－	31
5．接続数について	－	32～37
5－1．システム容量	－	32
5－2．周辺機器接続数	－	33
5－3．中継器接続数	．	34
5－4．感知器接続数	－	35～37
6．伝送線について	－	38～41
6－1．中継器伝送線の伝送距離（1系統あたり）	．．．．．	38
6－2．感知器伝送線の伝送距離（1系統あたり）	－	39
6－3．使用電線種類	－	40
6－4．伝送線シールドの処理方法	－	41
7．受信機～感知器について	－	42～51
7－1．感知器配線系統図	．\cdot ．${ }^{\text {a }}$	42
7－2．アイソレータ中継器の接続について	．	43
7－3．発信機応答線の接続について	．．．．＇	44～45
7－4．R型火災表示灯の接続について	－	46～47
7－5．アドレスアダプタ4回線用の接続について	．．．．．	48
7－6．P 型自動試験中継器4回線用の接続について	．\cdot ．．	49～50
7－7．リニューアル中継器4回線用対応）の接続について	．．．．	51

8．受信機～中継器について	\cdots	52～62
8－1．中継器配線系統図	－	52
8－2．ガス漏れ中継器2回線用の接続について	＊＊＊	53
8－3．地区音響中継器2回線用（自動試験機能付）の接続について	．\cdot ．	54
8－4．監視中継器の接続について	．．．．＇	55
8－5．移信中継器の接続について	－\cdot ．＇．	56
8－6．防排煙中継器4回線用の接続について	．．．．＇	57
8－7．防排煙遠隔復帰用中継器4回線用の接続について	．．．．＇	57
8－8．一般R型中継器4回線用の接続について	＊＊＊	58
8－9．火災表示灯3型の接続について	－．．．＇	59
8－10．中継リレー1型の接続について	．\cdot ．	60
8－11．光電式分離型感知器の接続について	\cdots	61
8－12． 地区音響中継器2回線用（自動試験機能無）の接続について	\cdots	62
9．受信機～周辺機器について	－	64～79
9－1．地図式，グラフィックパネル（オプション）の接続について	．．．．＇	64～66
9－2．P 型1級用副受信機の接続について	．${ }^{\text {a }}$	67
9－3．副表示機の接続について	－\cdot－	68～71
9－4．IFユニットの接続について	－\cdot－	72～75
9－5．RX コントローラの接続について	\ldots	76～79
10．受信機～他設備について	\ldots	80～84
10－1．受信機～非常放送設備の接続について	．．．．＇	80
10－2．受信機～他設備の接続について	－\cdot ．＇	81～82
10－3．受信機～消火栓起動盤の接続について	\cdots	83
10－4．2号消火栓の接続について	．．．＂	84
11．施工後の確認方法	\cdots	85
12．トラブルー覧	\cdots	86～90

1．概要

1－1．商品概要

本受信機は，火災感知器信号，ガス漏れ検知器信号及び各種警報信号を直接もしくは，中継器を介して取り込み，表示•音響鳴動を行います。
さらにその信号に連動して動作させるべき機器を設定された連動テ—ブルに従って，各種機器（地区音響設備，防排煙機器等）への制御信号を出力するGR型受信機です。

1．概要

1－2．システム構成図 1－2－1．全体（－－－更新部分，－•••既設部分）

函体接地［D種（第 5 種）接地相当以上（ 100Ω 以下）$]$
※ 1 建屋をまたがる場合はシールドが必要です
※2耐熱ケーブルを使用してください。
※3 PX発信機を接続する場合，発信機にAC端子が無いため，受信機のAC端子とP型自動試験中継器に供給している電源のコモン（CC）端子を接続Lてください。

1．概要

1－2－2．IFユニットを接続する場合（既設機器を使用する場合は別途お問合せください。）

（淮；IFユニットとRXコントローラを混在して使用することはできません。

1－2－3．RXコントローラを接続する場合（既設機器を使用する場合は別途お問い合わせください。） （淮）IFユニットRRコントローラを混在して使用することはできません。

1－3．連動テ一ブル上の管理アドレスと端末の設定アドレスについて

本受信機（受第2019～21号）では，リニューアルユニットを内蔵することにより，RX700受信機（受第30～4）号 と連動テ—ブル上の管理アドレス及びテーブルジェネレータを共通化しております。
リニューアルユニットは，感知器伝送線偶数系統（2系統，4系統，•••，16系統）に接続している現地既設の端末（感知器，発信機本体）の設定アドレスに対して，127を付加して連動テーブル上の管理アドレスに内部変換しています。
連動テ一ブル上の管理アドレスと端末（感知器，発信機本体）の設定アドレスの対比は以下の表を参照くだ さい。
（注）アイソレータに関してはアドレスの内部変換は行ないません。
ただし，連動テ—ブル上の管理アドレスは，感知器伝送線n系統（ $n=1,3, \cdots 15$（奇数系統））と感知器伝送線n＋1系統（偶数系統）の一括管理となります。
したがって，感知器伝送線n系統と感知器伝送線n＋1系統に接続するアイソレータの設定アドレスは重複しないようにしてください。

感知器，発信機のアドレス対比表

連動テ一ブル上の管理アドレス		端末（感知器，発信機本体）の設定アドレス
火災1系統（12） （ハード番号：001－12）	AD1～AD127	感知器伝送線1系統（SA1－SB1）AD1～AD127
	AD128～AD254	感知器伝送線2系統（SA2－SB2）AD1～AD127
$\begin{aligned} & \text { 火災2系統(14) } \\ & \text { (ハード番号:001-14) } \end{aligned}$	AD1～AD127	感知器伝送線3系統（SA3－SB3）AD1～AD127
	AD128～AD254	感知器伝送線4系統（SA4－SB4）AD1～AD127
$\begin{aligned} & \text { 火災3系統(21) } \\ & \text { (ハード番号:001-21) } \end{aligned}$	AD1～AD127	感知器伝送線5系統（SA5－SB5）AD1～AD127
	AD128～AD254	感知器伝送線6系統（SA6－SB6）AD1～AD127
火災4系統（22） （ハード番号：001－22）	AD1～AD127	感知器伝送線7系統（SA7－SB7）AD1～AD127
	AD128～AD254	感知器伝送線8系統（SA8－SB8）AD1～AD127
火災5系統（12） （ハード番号：002－12）	AD1～AD127	感知器伝送線9系統（SA9－SB9）AD1～AD127
	AD128～AD254	感知器伝送線10系統（SA10－SB10）AD1～AD127
火災6系統（14） （ハード番号：002－14）	AD1～AD127	感知器伝送線11系統（SA11－SB11）AD1～AD127
	AD128～AD254	感知器伝送線12系統（SA12－SB12）AD1～AD127
火災7系統（21） （ハード番号：002－21）	AD1～AD127	感知器伝送線13系統（SA13－SB13）AD1～AD127
	AD128～AD254	感知器伝送線14系統（SA14－SB14）AD1～AD127
火災8系統（22） （ハード番号：002－22）	AD1～AD127	感知器伝送線15系統（SA15－SB15）AD1～AD127
	AD128～AD254	感知器伝送線16系統（SA16－SB16）AD1～AD127

2．取付方法

2－1．壁掛型の場合（2系統）

2－1－1．例；（H1400 $\times \mathrm{W} 600 \times$ D180）
【図1】

ダルマ孔詳細

取付手順

1．取付位置を決め，取付用プラグボルトを打ち込む。
プラグボルト（M8）（市販品）の打ち込みと，配線を引き込む位置は【図1］の寸法図通りです。中央のプラグボルトは取り付けの位置決め用としてご利用ください。
AC100V配線及び小勢力配線を図11の位置より引き出してください。
本体の操作部（【図1】 ※ 1 ）が床面から $800 \mathrm{~mm} \sim 1500 \mathrm{~mm}$ の位置になるよう取り付けてください。
（注意）必ず垂直な壁に取り付けてください。
2．入線を行う。
AC100V配線及び小勢力配線を分割して入線してください。
3．配線する。
AC100V配線を接続する場合は，電源端子カバーをはずして接続してください。
結線後，電源端子カバーを必ず元に戻してください。
4．交流電源スイッチを「入」側にする。

標準仕様の寸法を表しています。特注仕様により変更される場合 がありますので，件名の外観図 をご確認ください。

5．電池のコネクタを取り付ける。
6．本体の扉を閉める。
7．プリンタ用紙をプリンタにセットする。
取扱説明書の「11－2．プリンタ用紙の交換方法」を参照してください。

2．取付方法

2－1．壁掛型の場合（4系統）

2－1－2．例；（H1400 \times W700 \times D180）

【図2】

ダルマ孔詳細

（正面より）

取付手順

1．取付位置を決め，取付用プラグボルトを打ち込む。
プラグボルト（M8）（市販品）の打ち込みと，配線を引き込む位置は【図2】の寸法図通りです。中央のプラグボルトは取り付けの位置決め用としてご利用ください。
AC100V配線及び小勢力配線を【図21の位置より引き出してください。
本体の操作部（【図2】 ※1）が床面から $800 \mathrm{~mm} \sim 1500 \mathrm{~mm}$ の位置になるよう取り付けてください。
（注意）必ず垂直な壁に取り付けてください。
2．入線を行う。
AC100V配線及び小勢力配線を分割して入線してください。
3．配線する。
AC100V配線を接続する場合は，電源端子力バーをはずして接続してください。
結線後，電源端子カバーを必ず元に戻してください。
4．交流電源スイッチを「入」側にする。

標準仕様の寸法を表しています。特注仕様により変更される場合 がありますので，件名の外観図 をご確認ください。

5．電池のコネクタを取り付ける。
6．本体の扉を閉める。
7．プリンタ用紙をプリンタにセットする。
取扱説明書の「11－2．プリンタ用紙の交換方法」を参照してください。

2．取付方法

2－2．自立型の場合

2－2－1．1面体取付寸法図（8系統以下）
【図3】例；（H2OOO \times W600 \times D450）

取付手順

1．取付位置を決め，チャンネルベース取付用アンカーボルトを打ち込む。
アンカーボルト（M12）の打ち込みと，配線を引き込む位置は「2－2－3．チャンネルベース取付寸法図」を参照してください。 アンカーボルトの種類については，受信機質量，設置場所等により，耐震計算が必要な場合がありますので当社へご相談ください。
2．チャンネルベースに函体を取り付け背面固定を行う。
背面転倒防止アンカーボルト（M12）の打ち込みは，取付寸法図《図3】を参照してください。
3．入線を行う。
AC100V配線及び小勢力配線を分割して入線してください。
4．配線する。
AC100V配線を接続する場合は，電源端子カバーをはずして接続してください。

標準仕様の寸法を表しています。特注仕様により変更される場合 がありますので，件名の外観図 をご確認ください。

5．交流電源スイッチを「入」側にする。
6．電池のコネクタを取り付ける。
7．本体の扉を閉める。
8．プリンタ用紙をプリンタにセットする。
取扱説明書の「11－2．プリンタ用紙の交換方法」を参照してください。

2．取付方法

2－2－2．2面体取付寸法図（12系統以上）

【図4】例；（H2000 \times W1200 \times D450）

（単位：mm）

取付手順

1．取付位置を決め，チャンネルベース取付用アンカーボルトを打ち込む。
アンカーボルト（M12）の打ち込みと，配線を引き込む位置は「2－2－3．チャンネルベース取付寸法図」を参照してください。 アンカーボルトの種類については，受信機質量，設置場所等により，耐震計算が必要な場合がありますので当社へご相談ください。
2．チャンネルベースに函体を取り付け背面固定を行う。
背面転倒防止アンカーボルト（M12）の打ち込みは，取付寸法図【図3】を参照してください。
（函体天面のアイボルト（吊りボルト）取り付け穴から埃などの異物が混入しないようにご注意ください。）
（2面体は1面体を2台並べた位置になります）
3．入線を行う。
AC100V配線及び小勢力配線を分割して入線してください。
4．配線する。
AC100V配線を接続する場合は，電源端子カバーをはずして接続してください。

標準仕様の寸法を表しています。特注仕様により変更される場合 がありますので，件名の外観図 をご確認ください。

5．交流電源スイッチを「入」側にする。
6．電池のコネクタを取り付ける。
7．本体の扉を閉める。
8．プリンタ用紙をプリンタにセットする。
取扱説明書の「11－2．プリンタ用紙の交換方法」を参照してください。

2．取付方法

2－2－3．チャンネルベース取付寸法図

【チャンネルベース寸法図】例標準寸法図（単位：mm）

（単位：mm）

標準仕様の寸法を表しています。特注仕様により変更される場合 がありますので，件名の外観図 をご確認ください。

2．取付方法

2－2－4．盤の設置についてのお願い

チャンネルベースは取付面の水平を確認し，適切なアンカーボルトを使用してしっかりと設置してください。水平に設置されていないと，扉・ボックスに歪みが発生し，扉の閉まりが悪くなる等の原因となります。必ずチャンネルベースが水平に設置されていることを確認し，背面を固定する場合は盤面の垂直も確認の上，盤の固定をしてください。

－列盤にする時のお願い

- 盤をチャンネルベースの上に置きチャンネルベースとボックスを付属のボルトで数回，回して仮締めしてください。
- 列盤間固定穴にボルトを差し込みボックスの前後，上下の調整をしながら列盤間のボルトを締めてください。
- チャンネルベース，ボックスの固定をしてください。
- 3面体以上の場合は，真中の盤から固定をしてください。

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3．機器の設定

3－1．受信機に連動テーブルやPX端末情報を登録する方法

\square 3－1－1．連動テーブルの転送

本受信機は，各件名にあわせて接続機器や連動設定などが登録された連動テ一ブルによって動作します。商品出荷時には，初期設定テ一ブルが登録されています。
必ず，専用ツ一ル（テ—ブルジェネレ—タ（F4TG））にて件名にあわせた連動テーブルを作成し，SDカ一ド経由で受信機に転送してください。
（注’；連動テ—ブルを登録しないと各件名にあった動作を保証できず，トラブルが多数発生します。
－連動テ—ブルの転送方法
「3－2．連動テ一ブルを転送する方法（SDカード \Rightarrow 受信機）」を参照ください。

```
•連動テ一ブルの作成方法
    別紙 『テ—ブルジェネレータ(F4TG)操作マニュアル』を参照ください。
```


\square 3－1－2．PX端末のアドレス登録

受信機にPX端末を接続する場合，受信機にPX端末のアドレス登録を行う必要があります。 PX端末のアドレス登録は，PX端末を実際に接続した状態で受信機の盤面操作により行います。
（偗）専用ツ一ル（F4TG，F4SD）によるPX端末のアドレス登録はできません。

－PX端末のアドレス登録方法

「3－3．PX端末のアドレスを登録する方法」を参照ください。

\square 3－1－3．PX端末のメッセージ登録

受信機にPX端末を接続する場合，PX端末のメッセ一ジの登録を行います。
専用ツ一ル（SDツ一ル（F4SD）にてPX端末のメッセ一ジファイルを作成し，SDカード経由で受信機に メッセ一ジを登録します。メッセージの登録は，受信機でPX端末のアドレス登録を行う前後のどちらでも実施できます。ただし，PX端末のアドレス登録は別途実施する必要があります。
（注）PX端末のメッセージの登録を行う際は，事前に，PX端末を接続するP型自動試験中継器が登録された連動テ一ブルを受信機に転送しておく必要があります。受信機内の連動テ—ブルにP型自動試験中継器 が登録されていない回線のPX端末のメッセージは受信機に読み込みできません。
－PX端末のメッセージファイルの登録方法
「3－4．PX端末のメッセ一ジファイルを受信機に読み込む方法（SDカ一ド \Rightarrow 受信機）」を参照ください。

尚，PX端末のメッセージは，受信機の盤面操作により直接入力することも可能です。
（受信機の盤面操作で直接入力する方法は取扱説明書を参照ください。）
－PX端末のメッセージファイルの作成方法
別紙 『SDツール（F4SD）操作マニュアル』を参照ください。

3．機器の設定

3－2．連動テーブルを転送する方法（SDカード \Rightarrow 受信機）

事前準備：転送用ファイルのSDカードへの保存（別紙『テーブルジェネレータ（F4TG）操作マニュアル』参照）

F4TGで『編集』を実行すると，転送用ファイルがパソコン上のC：$¥ F 4 T G ¥ S D ¥[F 4 x x x x x]$ フォルダに作成 されます。（※［F4xxxxx］は件名ファイル名です。）
転送したい件名の［F4xxxxx］をフォルダごと，SDカード直下（ルート）にコピーしてフォルダ名を［F4xxxxx］ から［SDTL］に変更してください。
（1）SDカードを受信機に挿入してください。 （SDカードの挿入方法（18～21ページ）参照）
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）受信機の液晶画面で 5 操作」を押してください。
（4）「点検•設定」を押してください。

（5）「履歴管理」を選択し，「実行」を押してください。

（6）受信機内部の点検スイツチを『定位』側に切替える と「テーブル転送SD」が現れます。

（7）「テーブル転送SD」を選択し，「実行」を押して ください。

（8）PASS画面でパスワード「0119」を入力し，「実行」を押してください。

（9）転送する件名データのファイル名とバージョンを確認後，「実行」を押してください。

－転送中は各ユニット毎の進捗表示が，順に■に塗りつぶされます。
－転送中に火災，ガス漏れ が発生した場合，火災， ガス漏れ情報を表示 します。
（10）全てのユニットへの転送が成功すると，受信機は自動的に再起動します。
※転送に失敗したユニットがある場合
失敗箇所（赤文字） を確認後，「再起動」 を押し，再度，（3）以降 の操作にてテーブル転送してください。

（注意）受信機起動時に液晶画面に「テーブルエラー」 を表示した場合，液晶画面をタッチしてテーブル転送画面に切替えてください。
メモ
－SDカードは商品に同梱していません。
別途手配が必要です。
【推奨SDカード】パナソニック製SDカード
（SD／SDHC対応 32GBまで）

3．機器の設定

3－3．PX端末のアドレスを登録する方法

 ＜予約登録〉P型自動試験中継器の 2 次側にPX端末を接続し，受信機にPX端末のアドレス登録を行います。 （PX端末のアドレス登録時は，連動テーブルの変更 が不要であるため，画面右上の \square は表示しません。）
（1）追加したいPX端末を接続してください。
「余分接続（予約）」トラブルが発生します。
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）受信機の液晶画面で 1 操作」を押してください。
（4）「点検•設定」を押してください。

⑤）「予約登録」を選択し，「実行」を押してください。

（6）登録するPX端末を選択すると，サブ表示部に「個別登録」及び「全て登録」が表示されます。 いずれかを選択し，「実行」を押してください。
（7）復旧スイッチを押してください。
＜予約登録削除＞
受信機に登録したPX端末のアドレスを削除します。
（1）削除したいPX端末を取り外してください。
「伝送不良（予約）」トラブルが発生します。
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）受信機の液晶画面で 5 操作」を押してください。
（4）「点検•設定」を押してください。

（5）「予約登録」を選択し，「実行」を押してください。

（6）削除するPX端末を選択すると，サブ表示部に「個別削除」及び「全て削除」が表示されます。 いずれかを選択し，「実行」を押してください。
（7）復旧スイッチを押してください。
－復旧スイッチを押した後，受信機の交流電源 スイッチを「切」側（予備電源もはずした状態） にしても，PX端末の登録情報は保持されます。
－連動テーブルを入れ替えても，PX端末の予約登録情報は保持されます。（ただし，P型自動試験中継器 の登録を削除した連動テーブルを受信機に転送した場合，PX端末の登録情報もクリアされます。）
－予約登録（操作）履歴は最新600件まで記録 できます。（RX感知器の予約登録操作との合計）
－PX端末のアドレスは，副表示機，防災CRT には表示されません。

3．機器の設定

3－4．PX端末のメッセージファイルを受信機に読み込む方法（SDカード \Rightarrow 受信機）

事前準備：PX端末のメッセージファイルのSDカードへの保存（別紙『SDツール（F4SD）操作マニュアル』参照）
F4SDで『APメッセージー編集』を実行すると，PX端末のメッセージファイル［F4xxxxx．4PM］がパソコン上の

PXメッセージファイル（4PM）をSDカードのルートディレクトリにコピーしてください。
（注）PX端末のメッセージファイルの登録を行う際は，事前に，PX端末を接続するP型自動試験中継器が登録された連動テーブルを受信機に転送しておく必要があります。受信機内の連動テーブルにP型自動試験中継器が登録されていない回線のPX端末のメッセージは受信機に読み込みできません。
（1）SDカードを受信機に挿入してください。 （SDカードの挿入方法（18～21ページ）参照）
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）受信機の液晶画面で「操作」を押してください。
（4）「点検•設定」を押してください。

（5）「AP端末SD」を選択し，「実行」を押してください。

（6）「SD \rightarrow 受信機」の左のボタンを選択し，「実行」を押してください。

（7）PXメッセージファイル（4PM）のファイル名を確認後，「SD \rightarrow 受信機」の左のボタンを選択し，「実行」を押してください。
（※読み込み中は進捗率が更新されます。）
（8）読み込みが完了したら，「終了」を押してください。
－受信機の交流電源スイッチを「切」 側（予備電源 もはずした状態）にしても，PX端末のメッセージ情報は保持されます。
－連動テーブルを転送しても，PX端末のメッセージ は保持されます。（ただし，P型自動試験中継器 の登録を削除した連動テーブルを受信機に転送 した場合，PX端末のメッセージもクリアされます。）
－SDツール（F4SD）でメッセージを変更する場合，受信機の盤面操作で変更したメッセージを反映 する必要があるため，受信機からSDカードに最新のメッセージファイルを書き込み，変更前 ファイルにしてください。
（「3－5．PX端末のメッセージファイルをSDカード
に書きこむ方法（受信機 \Rightarrow SDカード）」参照）
－メッセージの登録は，受信機でPX端末のアドレス登録を行う前後のどちらでも実施できます。
ただし，PX端末のアドレス登録は別途実施する必要があります。
－PX端末のメッセージは，副表示機，防災CRT には表示されません。
－SDカードは商品に同相していません。別途手配が必要です。
【推奨SDカード】パナソニック製SDカード （SD／SDHC対応 32GBまで）

3．機器の設定

3－5．PX端末のメッセージファイルをSDカードに書き込む方法（受信機 \Rightarrow SDカード）

（濉；SDツ一ル（F4SD）でメッセ一ジを変更する場合，受信機の盤面操作で変更したメッセ一ジを反映する必要があるため，受信機からSDカ一ドに最新のメッセ一ジファイルを書き込み，変更前ファイルにして ください。
（1）SDカードを受信機に挿入してください。 （SDカードの挿入方法（18～21ページ）参照）
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）受信機の画面操作で「操作」を押してください。
（4）「点検•設定」を押してください。

（5）「AP端末SD」を選択し，「実行」を押してください。

（6）「受信機 \rightarrow SD」の左のボタンを選択し，「実行」を押してください。

（7）「受信機 \rightarrow SD」の左のボタンを選択し，「実行」を押してください。
（※書き込み中は進捗率が更新されます。）
（8）書き込みが完了したら，「終了」を押してください。
－PXメッセージファイル［F4xxxxx．4PM］は， SDカ一ドのル一トディレクトリに作成されます。 （※［F4xxxxx］は件名ファイル名と同じです。）
－SDカ一ドをパソコンに挿入し，PXメッセ一ジ ファイルをデスクトップ等にコピーしてから， SDツール（F4SD）で読み込んでください。 （別紙『SDツ一ル（F4SD）操作マニュアル』参照）
－SDカ一ドは商品に同梱していません。別途手配が必要です。
【推奨SDカード】パナソニック製SDカード （SD／SDHC対応 32GBまで）

3．機器の設定

3－6．受信機の各種履歴情報をSDカードに書き込む方法（受信機 $=$ SDカード）

各種の履歴情報ファイルをSDカードに書き込む ことができます。
（1）SDカ一ドを受信機に挿入してください。 （SDカードの挿入方法（18～21ページ）参照）
（2）受信機内部の点検スイッチを『点検』側に切替えて ください。

（3）「操作」を押してください。
（4）「点検•設定」を押してください。

（5）「履歴管理」を選択し，「実行」を押してください。

（6）「履歴保存SD」を選択し，ボタンが紫色に変わった後，「実行」を押してください。

（7）書き込みしたい履歴情報（例はイベント履歴） を選択し，ボタンが紫色に変わった後，「実行」 を押してください。

（8）「受信機 \rightarrow SD」の横にあるボタンを選択し，「実行」を押してください。
履歴ファイルがSDカードに書き込みされます。
（※書き込み中は進捗率が更新されます。）
（9）書き込みが完了したら，「終了」を押してください。 メモ
－履歴ファイルの確認方法
履歴ファイルは，SDツ一ル『F4SD』にて，内容を確認する事ができます。
（別紙『SDツ一ル（F4SD）操作マニュアル』参照）
『履歴情報のファイル名』イベント履歴（MMDDhhmm．4EL）
最新600件のイベント履歴データファイル
\square 自動試験結果（MMDDhhmm．4AT）
自動試験の最新6ヶ月データファイル
口R型メッセージ（ F4xxxxxx．4RM）」
受信機盤面でメッセージ変更したRX端末の
最新メッセ一ジと端末情報データファイル
$\square R$ 型予約登録（ F4xxxxxx．4RR）」
TGで，「予約登録」種別として登録したRX端末のうち，実際に受信機盤面で予約登録操作したRX端末の情報データファイル
（※MMDDhhmm：操作した時の月日時分）
（※F4xxxxxx：件名のテーブルファイル名）
－SDカードは商品に同梱していません。
別途手配が必要です。
【推奨SDカード】パナソニック製SDカード
（SD／SDHC対応 32GBまで）

4．受信機内器構成

4－1．内器配置図

4－1－1．受信機 壁掛型（2系統）

4．受信機内器構成

4－1－2．受信機 壁掛型（4系統）

4．受信機内器構成

4－1－3．受信機 自立型（8系統以下）

（※1）品種によっては端末メインユニット を2枚使用します。

－SDカードは商品に同梱していません。別途手配が必要です。
【推奨SDカード】パナソニック製SDカード
（SD／SDHC対応 32GBまで）

4．受信機内器構成

4－1－4．受信機 自立型（2面体）（12系統以上）

4．受信機内器構成

4－2．受信機ブロック図

4．受信機内器構成

4－3．端子定格

【共通端子台】

端子記号	名 称	定 格	備 考	配線長
EB＋，EB－	非常放送 地区音響停止	無電圧a接点入力 （DC30V，1A）	非常放送設備のマイクスイッチ入カ $10 \mathrm{k} \Omega$ 終端抵抗必要	A
EF，EC	非常放送火災確認移信	無電圧a接点出力 （DC30V，1A）	2報以上の火災信号，発信機信号，火災断定時 の非常放送設備への移信出力移信停止1（ITb1，ITc1）端子を経由させて配線す ることにより，移信停止スイッチ操作により，移信出力を停止する	A
HL1－1，HL2－1	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－1，H2－1	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力消火栓連動停止スイッチ操作により，出力停止 する	A
GFa，GFc	ガス漏れ代表移信	無電圧a接点出力 （DC30V，1A）	ガス漏れの代表移信出力	A
KDa，KDb，KDc	火災断定移信	無電圧c接点出力 （DC30V，1A）	火災断定スイツチ操作の移信出力	A
GTa，GTc	ガス故障代表移信	無電圧a接点出力 （DC30V，1A）	ガス漏れ検知器故障の代表移信出力	A
Fa1，Fb1，Fc1	火災代表移信	無電圧c接点出力 （DC30V，1A）	火災発生の代表移信出力	A
Fa2，Fb2，Fc2	火災代表移信	無電圧c接点出力 （DC30V，1A）	火災発生の代表移信出力	A
Fa3，Fb3，Fc3	火災代表移信	無電圧c接点出力 （DC30V，1A）	火災発生の代表移信出力	A
TFa，TFc	故障代表移信	無電圧a接点出力 （DC30V，1A）	故障発生の代表移信出力	A
ITb1，ITc1 ※1	移信停止1 （非常放送専用）	無電圧b接点出力 （DC30V，1A）	非常放送設備への移信出力を移信停止したい場合の出力端子	A
$\begin{aligned} & \text { ITb2,ITc2 } \\ & \\ & \hline 1 \end{aligned}$	移信停止2	無電圧b接点出力 （DC30V，1A）	各設備ごとの移信出力を移信停止したい場合の出力端子	A
$\begin{array}{ll} \text { ITb3,ITc3 } & \nless 1 \end{array}$	移信停止3	無電圧b接点出力 （DC30V，1A）	各設備ごとの移信出力を移信停止したい場合の出力端子	A
S＋，S－	RS485 副表示機伝送線	RS485出力	副表示機接続用伝送線	\checkmark
SG	SG		RS485副表示機伝送線のグランド処理用 （シールド線処理用）	－

※ 1 ：移信停止 $1 ~ 3$ 端子は，あらかじめ登録された移信停止画面の移信停止スイッチ $1 ~ 3$ と連動して動作します。
（移信停止スイッチの操作方法については取扱説明書を参照してください）
移信停止スイッチ1（非常放送固定）
\rightarrow ITb1，ITc1
移信停止スイッチ 2 （名称はTGにて入力）
\rightarrow ITb2，ITc2
移信停止スイッチ3（名称はTGにて入力）
\rightarrow ITb3，ITc3
配線長A：1km未満
配線長 」：「9－3．副表示機の接続について」を参照してください。
（TG：テーブルジェネレータ）

4．受信機内器構成

【制御線端子台】

端子記号	名 称	定 格	備 考	配線長
$\mathrm{F}+, \mathrm{CC}(-)$	外部制御 （自火報制御）	有電圧出力 （ $\mathrm{DC} 27 \mathrm{~V}, 0.7 \mathrm{~A}$ ）	常時通電 ヒューズ有り（F2：2．0A）	B
VP11＋，VPC（－）	防排煙制御線	有電圧出力 （DC27V，2A）（合計）	ヒューズ有り（F5：3．0A）	C
VP12＋，VPC（－）	防排煙制御線	有電圧出力 （DC27V，2A）（合計）	ヒューズ有り（F6：3．0A）	C
DA＋，CC（－）	監視制御線	有電圧出力 （ $\mathrm{DC} 27 \mathrm{~V}, 0.9 \mathrm{~A}$ ）	ヒューズ有り（F3：2．0A）	D
$\mathrm{B}+, \mathrm{BC}(-) \quad \not \quad 1$	地区音響制御線	有電圧出力 （ $\mathrm{DC} 27 \mathrm{~V}, 0.8 \mathrm{~A}$ ）	ヒューズ有り（F4：2．0A）	E
LA，LB	基幹伝送路	多重伝送 （LON伝送）	シリアル伝送線 （周辺機器接続用）	F
Ira，Irb，Irc	火災復旧出力	無電圧c接点出力 （DC30V，1A）	火災復旧中接点出力	A
FG	FG		シリアル伝送線（シールド線）のグランド処理	－

※1：非常放送設備を使用する場合等で，地区音響端子を使用しない場合があります。
配線長A：1km未満
配線長B：配線抵抗「R1」 Ω 以下
配線長C：配線抵抗「R2」 Ω 以下
配線長D：配線抵抗 20Ω 以下
配線長E：配線抵抗「R3」 Ω 以下
配線長F：「9－4．IFユニットの接続について」又は「9－5．RXコントローラの接続について」を参照してください。
$\left(\mathrm{R} 1 \leqq \frac{5}{0.022 \times(\text { 一般 } R \text { 型中継器接続個数 }+ \text { アドレスアダプタ4回線用接続個数 })+0.058 \times(\mathrm{P} \text { 型自動試験中継器の接続個数 })+0.215}\right)$
$\left(\mathrm{R} 2 \leqq \frac{26.5 \text {－該当防排煙回線に接続する端末の最低動作電圧 }(\mathrm{V})}{\left.\text { 該当防排煙回線に接続する端末の制御（動作）}{ }^{\text {電流 }(A)}\right)}\right.$ ）
$\left(\mathrm{R} 3 \leqq \frac{6.5}{\text { 一斉鳴動時の制御（動作）電流 }(A) / 2}\right)$

4．受信機内器構成

【制御線2端子台】（12系統以上のタイプで使用します）

端子記号	名 称	定 格	備 考	配線長
$\begin{array}{r} \text { F2+,CC2(-) } \\ \\ \ldots 1 \end{array}$	外部制御 （自火報制御）	有電圧出力 （DC27V，0．7A）	常時通電 ヒューズ有り（F2：2．0A）	B
VP21＋，VPC2（－）	防排煙制御線	有電圧出力 （ $\mathrm{DC} 27 \mathrm{~V}, 2 \mathrm{~A}$ ）（合計）	ヒューズ有り（F5：3．0A）	C
VP22＋，VPC2（－）	防排煙制御線	有電圧出力 （DC27V，2A）（合計）	ヒューズ有り（F6：3．0A）	C
DA2＋，CC2（－）	監視制御線	有電圧出力 （ $\mathrm{DC} 27 \mathrm{~V}, 0.9 \mathrm{~A}$ ）	ヒューズ有り（F3：2．0A）	D
$\begin{array}{rr} \mathrm{B} 2+, \mathrm{BC} 2(-) & \\ & \ldots 2 \end{array}$	地区音響制御線	有電圧出力 （DC27V，0．8A）	ヒューズ有り（F4：2．0A）	E
Ira2，Irb2，Irc2	火災復旧出力	無電圧c接点出力 （DC30V，1A）	火災復旧中接点メイク	A

※1：電流容量は仕様によっては異なる場合があります。
※2：非常放送設備を使用する場合等で，地区音響端子を使用しない場合があります。
配線長A：1km未満
配線長B：配線抵抗「R1」 Ω 以下
配線長C：配線抵抗「R2］Ω 以下
配線長D：配線抵抗 20Ω 以下
配線長E：配線抵抗「R3」 Ω 以下

$\left(\mathrm{R} 2 \leqq \frac{26.5 \text {－該当防排煙回線に接続する端末の最低動作電圧 }(\mathrm{V})}{\text { 該当防排煙回線に㢺続する端末の制御（動作）}) \text { 電流 }(\mathrm{A})}\right.$ ）
$\left(\mathrm{R} 3 \leqq \frac{6.5}{\text { 一斉鳴動時の制御（動作）電流 }(\mathrm{A}) / 2}\right)$

4．受信機内器構成

【移信端子台】 ※1

端子記号	名 称	定 格	備 考	配線長
I1 \sim I5，IC1	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I6～I10，IC2	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I11～I15，IC3	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I16～I20，IC4	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I21～I25，IC5	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I26～I30，IC6	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A

※ 1 ：移信端子台は 2.4 系統で 15 回線， $6 ~ 16$ 系統で 30 回線が標準で使用できます。
配線長A：1km未満
（TG：テーブルジェネレータ）

【移信増設端子台】（オプション）※2

端子記号	名 称	定 格	備 考	配線長
I31～I35，IC7	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGlにて設定）	A
I36～I40，IC8	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I41～I45，IC9	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I46～I50，IC10	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I51～I55，IC11	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A
I56～I60，IC12	移信	無電圧a接点出力 （DC30V，1A）	他設備，非常放送設備への移信出力 （TGにて設定）	A

※2：増設回線数により端子記号は異なります。（最大 100 回線）
配線長A：1km未満
（TG：テーブルジェネレータ）

4．受信機内器構成

【伝送線端子台】

端子記号	名 称	定 格	備 考	配線長
SA1，SB1	感知器伝送線 1系統	多重伝送	感知器伝送線1系統	I
SA2，SB2	感知器伝送線 2系統	多重伝送	感知器伝送線2系統	I
SA3，SB3	感知器伝送線 3系統	多重伝送	感知器伝送線3系統 RX700R（4系統）以上のタイプで使用	I
SA4，SB4	感知器伝送線 4系統	多重伝送	感知器伝送線4系統 RX700R（4系統）以上のタイプで使用	I
NA1，NB1	中継器伝送線 1系統	多重伝送	中継器伝送線1系統	H
NA2，NB2	中継器伝送線 2系統	多重伝送	中継器伝送線2系統 RX700R（6系統）以上のタイプで使用	H
A1，AC	発信機応答	DC27V，0．3A	発信機応答入力1系統 ヒューズ有り（F1：0．5A）	G
A2，AC	発信機応答	DC27V， 0.3 A	発信機応答入力2系統 ヒューズ有り（F1：0．5A）	G
A3，AC	発信機応答	DC27V，0．3A	発信機応答入力3系統 ヒューズ有り（F1：0．5A）	G
GS＋，CC（－）	ガス表示灯電源	有電圧出力 DC27V，0．25A	ガス漏れ表示灯中継器（パナソニック株製 BG37103K，BG371037K）12個接続可 ヒューズ有り（F7：0．5A）	G
T，TC	電話		発信機又は副表示機と受信機間の電話線 （自火報電話機のみ接続可）	G

【伝送線2端子台】（6系統以上のタイプで使用します）

端子記号	名 称	定 格	備 考	配線長
SA5，SB5	感知器伝送線 5系統	多重伝送	感知器伝送線5系統 RX700R（6系統）以上のタイプで使用	I
SA6，SB6	$\begin{aligned} & \hline \text { 感知器伝送線 } \\ & \text { 6系統 } \end{aligned}$	多重伝送	感知器伝送線6系統 RX700R（6系統）以上のタイプで使用	I
SA7，SB7	感知器伝送線 7系統	多重伝送	感知器伝送線7系統 RX700R（8系統）以上のタイプで使用	I
SA8，SB8	感知器伝送線 8系統	多重伝送	感知器伝送線8系統 RX700R（8系統）以上のタイプで使用	I
NA1，NB1	中継器伝送線 1系統	多重伝送	中継器伝送線1系統 RX700R（6系統）以上のタイプで使用	H
NA2，NB2	中継器伝送線 2系統	多重伝送	中継器伝送線2系統 RX700R（6系統）以上のタイプで使用	H
A1，AC	発信機応答	DC27V， 0.3 A	発信機応答入力 1 系統 ヒューズ有り（F1： 0.5 A ）	G
A2，AC	発信機応答	DC27V， 0.3 A	発信機応答入力2系統 ヒューズ有り（F1：0．5A）	G
A3，AC	発信機応答	DC27V， 0.3 A	発信機応答入カ 3 系統 ヒューズ有り（F1： 0.5 A ）	G
T，TC	電話		発信機又は副表示機と受信機間の電話線 （自火報電話機のみ接続可）	G

配線長 G：配線抵抗50 Ω 以下
配線長H：配線抵抗20 Ω 以下「6－1．中継器伝送線の伝送距離（1系統あたり）」を参照してください。
配線長 I ：配線抵抗 20Ω 以下「6－2．感知器伝送線の伝送距離（1系統あたり）」を参照してください。

4．受信機内器構成

【伝送線3端子台】（12系統以上のタイプで使用します）

端子記号	名 称	定 格	備 考	配線長
SA9，SB9	感知器伝送線 9系統	多重伝送	感知器伝送線9系統 RX700R（12系統）以上のタイプで使用	I
SA10，SB10	感知器伝送線 10系統	多重伝送	感知器伝送線10系統 RX700R（12系統）以上のタイプで使用	I
SA11，SB11	感知器伝送線 11系統	多重伝送	感知器伝送線11系統 RX700R（12系統）以上のタイプで使用	I
SA12，SB12	感知器伝送線 12系統	多重伝送	感知器伝送線12系統 RX700R（12系統）以上のタイプで使用	I
NA3，NB3	中継器伝送線 3系統	多重伝送	中継器伝送線3系統 RX700R（12系統）以上のタイプで使用	H
NA4，NB4	中継器伝送線 4系統	多重伝送	中継器伝送線4系統 RX700R（16系統）のタイプで使用	H
A4，AC	発信機応答	DC27V， 0.3 A	発信機応答入力4系統 ヒューズ有り（F1：0．5A）	G
A5，AC	発信機応答	DC27V， 0.3 A	発信機応答入力5系統 ヒューズ有り（F1：0．5A）	G
A6，AC	発信機応答	DC27V，0．3A	発信機応答入力6系統 ヒューズ有り（F1：0．5A）	G
GS2＋，CC2（－）	ガス表示灯電源	有電圧出力 DC27V，0．25A	ガス漏れ表示灯中継器（パナソニック株）製 BG37103K，BG371037K）12個接続可 ヒューズ有り（F7：0．5A）	G
T，TC	電話		発信機又は副表示機と受信機間の電話線 （自火報電話機のみ接続可）	G

【伝送線4端子台】（16系統のタイプで使用します）

端子記号	名 称	定 格	備 考	配線長
SA13，SB13	感知器伝送線 13系統	多重伝送	感知器伝送線13系統 RX700R（16系統）のタイプで使用	I
SA14，SB14	感知器伝送線 14系統	多重伝送	感知器伝送線14系統 RX700R（16系統）のタイプで使用	I
SA15，SB15	感知器伝送線 15系統	多重伝送	感知器伝送線15系統 RX700R（16系統）のタイプで使用	I
SA16，SB16	感知器伝送線 16系統	多重伝送	感知器伝送線16系統 RX700R（16系統）のタイプで使用	I
NA3，NB3	中継器伝送線 3系統	多重伝送	中継器伝送線3系統 RX700R（16系統）のタイプで使用	H
NA4，NB4	中継器伝送線 4系統	多重伝送	中継器伝送線4系統 RX700R（16系統）のタイプで使用	H
A4，AC	発信機応答	DC27V，0．3A	発信機応答入力4系統 ヒューズ有り（F1：0．5A）	G
A5，AC	発信機応答	DC27V，0．3A	発信機応答入力 5 系統 ヒューズ有り（F1：0．5A）	G
A6，AC	発信機応答	DC27V，0．3A	発信機応答入力6系統 ヒューズ有り（F1：0．5A）	G
T，TC	電話		発信機又は副表示機と受信機間の電話線 （自火報電話機のみ接続可）	G

配線長 G：配線抵抗50 Ω 以下
配線長H：配線抵抗20 Ω 以下「6－1．中継器伝送線の伝送距離（1系統あたり）」を参照してください。
配線長 I ：配線抵抗 20Ω 以下「6－2．感知器伝送線の伝送距離（1系統あたり）」を参照してください。

【消火栓増設端子台】（オプション）※1

端子記号	名 称	定 格	備 考	配線長
HL1－2，HL2－2	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－2，H2－2	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力消火栓連動停止スイッチ操作により，出力停止 する	A
HL1－3，HL2－3	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－3，H2－3	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力 消火栓連動停止スイッチ操作により，出力停止 する	A
HL1－4，HL2－4	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－4，H2－4	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力消火栓連動停止スイッチ操作により，出力停止 する	A
HL1－5，HL2－5	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－5，H2－5	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力 消火栓連動停止スイッチ操作により，出力停止 する	A
HL1－6，HL2－6	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－6，H2－6	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力消火栓連動停止スイッチ操作により，出力停止 する	A
HL1－7，HL2－7	消火栓起動	有電圧接点入力 （AC24V，22．5mA）	消火栓機器からの作動信号入力	A
H1－7，H2－7	消火栓始動	無電圧a接点出力 （DC30V，1A）	消火栓機器への作動連動信号出力消火栓連動停止スイツチ操作により，出力停止 する	A

※1：増設回線数により端子記号は異なります。（最大 13 系統）
配線長A：1km未満

4．受信機内器構成

【分離型A端子台】（オプション）※1

端子記号	名 称	定 格	備 考	配線長
CT＋，CT－	カレント出カ	多重伝送 （調歩同期式）		K
CR＋，CR－	カレント入カ	多重伝送 （調歩同期式）		K
PI＋，PI－	DC24V入カ		L	
ZG	電源入カ	ZG		カレント線（多重伝送線）のグランド処理用 （FGと続しないだくささい）

※1：グラパネユニット（オプション）接続時に必要です。
配線長K：500m未満
配線長L：30m以下

【IFユニット】（オプション）

端子記号	名 称	定 格	備 考	配線長
$\mathrm{PI}+, \mathrm{PI}-$	電源入力	DC24V入力	L	
LA，LB	基幹伝送路	多重伝送 （LON伝送）	シリアル伝送路 （受信機接続用）	F
SE	SE	シリアル伝送路（シールド線）のグランド処理用 （制御線端子台のFG端子と接続してください）	-	

配線長 F ：「9－4．IFユニットの接続について」を参照してください
配線長L：30m以下

4．受信機内器構成

4－4．受信機ヒユーズ一覧

盤 名 称	端子台・ユニット名称		ヒューズ番号	定格	備考
受 信 機	標準	制御線端子台制御線2端子台	F1 ：発信機	O．5A	A1，AC A2，AC A3，AC又は $A 4, A C$ A5，AC A6，AC
			F2 ：外部制御	2．$O A$	F＋，CC（－）又は $\mathrm{F} 2+, \mathrm{CC} 2(-)$
			F3 ：監視	2．$O A$	DA＋，CC（－）又は DA2＋，CC2（－）
			F4 ：地区音響	2．$O A$	$\mathrm{B}+\mathrm{BC}(-)$ 又は $\mathrm{B} 2+, \mathrm{BC} 2(-)$
			F5 ：防排煙1	3． OA	VP11＋，VPC（－）又は VP21＋，VPC2（－）
			F6 ：防排煙2	3． OA	VP12＋，VPC（－）又は VP22＋，VPC2（－）
		伝送線端子台伝送線3端子台	F7 ：ガス表示灯	O． 5 A	GS＋，CC（－）又は GS2＋，CC2（－）
		電 源	AF1：1次側	15．OA	- 電源毎にヒューズが存在します。 - 受信機のタイプにより 予備電源の本数は，異なります。 －12系統以上のタイプは電源が2台 あります。
			AF2 ：1次側	15．OA	
			AF3：予備電源1	10．OA	
			AF4：予備電源2	10．OA	
			AF5：予備電源3	10．OA	
			AF6：予備電源4	10．OA	
			AF7：予備電源5	10．OA	

5．接続数について

5－1．システム容量

受信機に接続される感知器アドレス数，中継器回線数，周辺機器接続数を説明します。
【受信機】受第2019～21号の場合

品種	対応規模	システム容量			電源タイプ（予備電源）
RX700R GR型受信機 （382アドレス）	$\sim 12,500 \mathrm{~m}^{2}$	自火報アドレス	～254アドレス（2感知器伝送線）		電源
		防排煙（監視）回線数	～256回線	合計 256回線 （1中継器伝送線）	AC100V（50／60Hz）480VA
		移信回線数	～256回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	～80回線		DC24V 4．0Ah $\times 4$ 本（※2）
		ガス漏れ回線数	～160回線		
		一般R型回線数（※1）	～256回線		

RX700R GR型受信機 （636アドレス）	$\sim 25,000 \mathrm{~m}^{2}$	自火報アドレス	～508アドレ	知器伝送線）	電源
		防排煙（監視）回線数	～256回線	合計 256回線 （1中継器伝送線）	AC100V（50／60Hz）480VA
		移信回線数	～256回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	～80回線		DC24V 4．0Ah×4本（※2）
		ガス漏れ回線数	～160回線		
		一般R型回線数（※1）	～256回線		
$\begin{gathered} \text { RX700R } \\ \text { GR型受信機 } \\ \text { (1018アドレス) } \end{gathered}$	$\sim 37,500 \mathrm{~m}^{2}$	自火報アドレス	～762アドレス（6感知器伝送線）		電源
		防排煙（監視）回線数	～512回線	合計 512回線 （2中継器伝送線）	AC100V（50／60Hz）530VA
		移信回線数	～512回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	～80回線		DC24V 4．0Ah $\times 5$ 本（※2）
		ガス漏れ回線数	～320回線		
		一般R型回線数（※1）	～512回線		

$\begin{gathered} \text { RX700R } \\ \text { GR型受1信機 } \\ \text { (1272アドレス) } \end{gathered}$	$\sim 50,000 \mathrm{~m}^{2}$	自火報アドレス	～1016アドレス（8感知器伝送線）		電源
		防排煙（監視）回線数	～512回線	合計 512回線 （2中継器伝送線）	AC100V（ $50 / 60 \mathrm{~Hz}$ ）530VA
		移信回線数	～512回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	~ 80 回線		DC24V 6．0Ah $\times 4$ 本（※2）
		ガス漏れ回線数	～320回線		
		一般R型回線数（※1）	～512回線		

$\begin{gathered} \text { RX700R } \\ \text { GR型受信機 } \\ \text { (1908アドレス) } \end{gathered}$	$\sim 75,000 \mathrm{~m}^{2}$	自火報アドレス	～1524アドレス（12感知器伝送線）		電源
		防排煙（監視）回線数	～768回線	合計 768回線 （3中継器伝送線）	AC100V（ $50 / 60 \mathrm{~Hz}$ ）980VA
		移信回線数	～768回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	～160回線		DC24V 6．0Ah×7本（※2）
		ガス漏れ回線数	～480回線		
		一般R型回線数（※1）	～768回線		

$\begin{gathered} \text { RX700R } \\ \text { GR型受信機 } \\ \text { (2544アアドレス) } \end{gathered}$	$\sim 100,000 \mathrm{~m}^{2}$	自火報アドレス	～2032アドレス（16感知器伝送線）		電源
		防排煙（監視）回線数	～1024回線	合計 1024回線 （4中継器伝送線）	AC100V（ $50 / 60 \mathrm{~Hz}$ ）1060VA
		移信回線数	～1024回線		予備電源（Ni．Cd蓄電池）
		地区音響回線数	～160回線		DC24V 6．0Ah $\times 8$ 本（※2）
		ガス漏れ回線数	～640回線		
		一般R型回線数（※1）	～1024回線		

（※1）受信機の汎用電源（F＋，CC（－））の容量に制限があるため，回線数によっては 別電源からの電源供給が必要となります。
（※2）仕様により異なる場合があります。

5．接続数について

5－2．周辺機器接続数

5．接続数について

5－3．中継器接続数

【 RX中継器（1系統あたり）最大接続数】
［単位：回線数／1系統］

	中継器								
	$\begin{gathered} \text { ガス } \\ \text { 漏れ } \\ \text { 中継器 } \end{gathered}$	地区音響 中継器 ※1	防排煙中継器	防排煙遠隔復帰用中継器	監視中継器		移信 中継器		一般 R型 中継器 $※ 2$
	NCH553EX	NCH560EX	NCH555EX	NCH556EX	NCH558EX	NCH559EX	NCH562EX	NCH563EX	NCH554EX
1台あたりのアド レス数と回線数	1アドレス 2回線	1アドレス 2回線	1アドレス 4回線	2アドレス 4回線	1アドレス 4回線	2アドレス 8回線	1アドレス 4回線	2アドレス 8回線	2アドレス 4回線
タイプ	c	e	b	d	b	a	b	a	f
制限1： 最大回線数制限	160回線	80回線	256回線						
制限2： 端末混在時 トータル接続数 （3つの式を満足 すること）				$\begin{aligned} & 8 \mathrm{a}+4 \mathrm{~b} \\ & 2 \mathrm{c} \leqq 1 \\ & 2 \mathrm{e} \leqq 8 \\ & 4 \quad(\mathrm{a}+ \end{aligned}$	$\begin{aligned} & +2 c+4 d+2 e \\ & 60 \\ & 0 \\ & b+c+d+e+f \end{aligned}$	$\begin{aligned} & e+4 f \leqq 256 \\ & \text { f) } \leqq 400 \end{aligned}$			
制限3： システム接続数 （受信機タイプ）				信機タイフ	プによるシ	ステム容量	量を超えない		

※ 1 ：地区音響中継器は，タイプにより系統数が増加しても，トータル接続数は受信機1面体あたり最大80回線以下となります。
※2：受信機汎用電源（F＋，CC（－））の電流容量制限について
受信機1台あたりの一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用の接続数が下記の式を満足しない場合は，汎用電源（F＋，CC（－））の容量が不足するため，別電源からの電源供給が必要となります。

（1）+ （2）$+(3) \leqq 700(\mathrm{~mA})$

（1）一般感知器使用時の監視時消費電流（終端抵抗 $10 k \Omega$ 時）
$=22 \times$（一般R型中継器（4回線）とアドレスアダプタ4回線用の接続数）
$+58 \times(\mathrm{P}$ 型自動試験中継器4回線用の接続数）（mA）
（2）一般感知器使用時の5回線発報時消費電流 $=215$（mA）
（3）一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用以外の機器の総消費電流（mA）
－アドレス設定器（NSY452またはNSY501）の取扱説明書を参照し，同系統に接続するアドレス は以下のアドレス範囲で重複しない様に設定してください。

中継器	アドレス範囲
防排煙中継器（4回線） 防排洷遠隔復帰用中継器（4回線） 監視中継器（4回線，8回線） 移信中継器（4回線，8回線） ガス漏れ中継器（2回線） 一般R型中継器（4回線）	1～128
地区音響中継器（2回線）	129～224

5．接続数について

5－4．感知器接続数

【 RX中継器•RX感知器•RX発信機（1系統あたり）最大接続数】
［単位：個／1系統］

			迷器			感知器	発信機	
	RX アインレータ （NCH575EX） （NCH575EX）	RX アドレス アダプタ （NCH576EX）	$\underset{\substack{\text { アドレス } \\ \text { アダメス } \\ \text { 4回線男 } \\ \text { (NCH57EX) }}}{\text { R1 }}$	$\begin{aligned} & \mathrm{RX} \text { ※1 } \\ & \text { P型自動試験 } \\ & \text { 4継線用 } \\ & \text { (NCH573EX) } \end{aligned}$	RX ※3 アドレス付 スポット型感知器	RX アドレス付発信機 （NYM127CF）	RX $\begin{gathered} \text { アドレス付 } \\ \text { 熱電対 } \\ \text { (NS検出器 } \end{gathered}$	RX アドレス付光電式盆離型器
1台あたりのアドレス数	1アドレス	1アドレス	4アドレス	4アドレス	1アドレス	1アドレス	1アドレス	1アドレス
タイプ	D	C	C＇	G	A	B	E	F
制限1： 同一端末最大接続数	10個	100個	25個	25個／2系統 ※2	127個	127個	60個	30個
制限2：端末混雑時 トータル接続数 （6つの式を満足するこ と）	$\begin{aligned} & A+B+C+4 C^{\prime}+D+E+F+4 G \leqq 127 \\ & A+B+3 C+10 C^{\prime}+5 D+4 E+5 F+10 G \leqq 300 \\ & C+4 C^{\prime}+4 G \leqq 100 \\ & D \leqq 10 \\ & E \leqq 60 \\ & F \leqq 30 \end{aligned}$							

※ 1：受信機汎用電源（F＋，CC（－））の電流容量制限について
受信機1台あたりの一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用の
接続数が下記の式を満足しない場合は，汎用電源（F＋，CC（－））の容量が不足するため，別電源からの電源供給が必要となります。
（1）$+(2)+(3) \leqq 700(\mathrm{~mA})$
（1）一般感知器使用時の監視時消費電流（終端抵抗 $10 k \Omega$ 時）
$=22 \times$（一般R型中継器（4回線）とアドレスアダプタ4回線用の接続数）
$+58 \times($ P型自動試験中継器4回線用の接続数）（mA）
（2）一般感知器使用時の5回線発報時消費電流 $=215$（mA）
（3）一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用以外の機器の総消費電流（mA）
※2：P型自動試験中継器4回線用は，感知器伝送線n系統（ $n=1,3, \cdots 15$（奇数系統））と感知器伝送線 $n+1$ 系統（偶数系統）を併せた2系統の合計で25個まで
－アドレス設定器（NSY452またはNSY501）の取扱説明書を参照し，同系統に接続するアドレスは以下のアドレス範囲で重複しない様に設定してください。

機器	アドレス範囲
RX アドレス付感知器	1～127
RX アドレス付発信機	
（RX アドレスアダプタ	
RX アドレスアダプタ4回線用	
RX P 型自動試験中継器4回線用	
RX アインレータ	230～254

5．接続数について

	［単位：個／1系統］					
	一般感知器（当社製）					
	$\begin{aligned} & \text { 電子式 } \\ & \text { 熱感知型 } \end{aligned}$	煙感知器 （光電式 スポット型）	$\begin{aligned} & \text { 光電式 } \\ & \text { 凨離型 } \\ & \text { 咸 } \end{aligned}$	熱電対検出器	旧炎感知器	新炎感知器
感知器タイプ	A	B	C	D	E	E＇
制限1： 同一種別の最大接続数	2000個	500個	20セット	125個	150個	100個
制限2：複数種別混在時 トータル接続数	A $+4 \mathrm{~B}+16 \mathrm{D}+100 \mathrm{C}+13.33 \mathrm{E}+19.9 \mathrm{E}^{\prime} \leqq 2000$					

【アドレスアダプタ（NCH535EXA）2次側（1回線あたり）最大接続数】
単位：個／1回線］

	一般感知器（当社製）					
	$\begin{aligned} & \text { 自電子保持型 } \\ & \text { 熱感知口器 } \end{aligned}$	煙感知器 （光電式 スポット型）	光電式分感離型	$\begin{aligned} & \text { 熱電対 } \\ & \text { 検出器 } \end{aligned}$	旧炎感知器	新炎感知器
感知器タイプ	A	B	C	D	E	E＇
制限1： 同一種別の最大接続数	30個	20個	1セット	7個	2個	1個
制限2：複数種別混在時 トータル接続数	$\begin{array}{cc} \mathrm{A}+1.5 \mathrm{~B}+15 \mathrm{E}+30 \mathrm{E}, & \leqq 30 \\ \mathrm{~B}+10 \mathrm{E}+20 \mathrm{E}, & \leqq 20 \\ 0.35 \mathrm{~B}+\mathrm{D}+3.5 \mathrm{E}+7 \mathrm{E} & \leqq 7 \\ \mathrm{C} \leqq 1 & \end{array}$					

※光電式分離型感知器と他の一般感知器との混在接続はできません。

	【アドレスアダプタ4回線用（NCH557EX）2次側（1回線あたり）最大接続数】 一般R型中継器（NCH554EX）2次側（1回線あたり）最大接続数】				［単位：個／1回線］	
	一般感知器（当社製）					
	$\begin{aligned} & \text { 電子式 } \\ & \text { 自保持型 } \\ & \text { 熱感知器 } \end{aligned}$	煙感知器 （光電式 スポット型）	$\begin{aligned} & \text { 光霍式 } \\ & \text { 型 } \\ & \text { 感知器 } \end{aligned}$	熱電対 検出器	旧炎感知器	新炎感知器
感知器タイプ	A	B	C	D	E	E＇
制限1： 同一種別の最大接続数	80個	20個	1セット	7個	4個	2個
制限2：複数種別混在時 トータル接続数	$\begin{array}{cr} \mathrm{A}+4 \mathrm{~B}+20 \mathrm{E}+40 \mathrm{E}^{\prime} & \leqq 80 \\ \mathrm{~B}+5 \mathrm{E}+10 \mathrm{E}^{\prime} & \leqq 20 \\ 0.35 \mathrm{~B}+\mathrm{D}+1.75 \mathrm{E}+3.5 \mathrm{E} & \leqq 7 \\ \mathrm{C} \leqq 1 & \end{array}$ ※光電式分離型感知器と他の一般感知器との混在接続はできません。					

5．接続数について

【P型自動試験中継器（NCH573EX）2次側（1回線あたり）最大接続数】
［単位：個／1系統］

	一般感知器							PX感知器 （アドレス付） （※1） PX発信機 （アドレス付）
	熱感知器 （電子式自己保持タイプ）	（2票感知器 （式）	煙感知器 $(1$ 種	$\begin{aligned} & \text { 熛感知器 } \\ & \text { (2言号 } \end{aligned}$	光䨋式型馝筥		焱感知器	
感知器タイプ	A	B	C	D	E	F	G	H
制限1： 同一種別の最大接続数	80個	30個	30個	20個	1セット	5個	4個	30個
制限2： 複数種別 混在時トータル接続数	$\begin{aligned} & \mathrm{A}+4 \mathrm{D}+(8 / 3)(\mathrm{B}+\mathrm{C}+\mathrm{H})+20 \mathrm{G}+16 \mathrm{~F} \leqq 80 \\ & \mathrm{E} \leqq 1 \end{aligned}$ ※光電式分離型感知器と他の感知器との混在接続はできません。							

（※1）PX感知器（2信号）（NSS4O9EG）は接続できません。

6．伝送線について

6－1．中継器伝送線の伝送距離（1系統あたり）

※ 1 ：伝送距離については電線の線径により異なります。（下記参照）

使用電線の線径と最遠配線長距離の関係				
線径	$\Phi 0.9$	$\Phi 1.2$	$\Phi 1.6$	$\Phi 2.0$
最遠配線長距離	340 m	600 m	1.0 km	1.5 km

（䜃）建屋をわたる伝送線については，シールドが必要です。
（処理方法については「6－4．伝送線シールドの処理方法」を参照してください）

6．伝送線について

6－2．感知器伝送線の伝送距離（1系統あたり）

【 b ＊：単位 m 】

伝送方式	ポーリング／セレクティング方式	
伝送電圧	$\pm 30 \mathrm{~V}$ 定電圧化	
配線形態	2線 無極性 分岐配線可能	
伝送距離	最遠配線長	
	総配線長	$\mathrm{b}_{0}+\mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3}+\mathrm{b}_{4} \leqq 2$ ． Okm
線路条件	使用電線	幹線 ：耐熱ケーブル（ツイストペア） フロア配線 ：耐熱ケーブル
	配線抵抗	20 2 以下（最遠配線長距離）
	静電容量	O． $2 \mu \mathrm{~F}$ 以下

※ 1 ：伝送距離については電線の線径により異なります。（下記参照）

使用電線の線径と最遠配線長距離の関係				
線径	Ф0．9	Ф1．2	Ф1．6	Ф2．0
最遠配線長距離	340 m	600 m	1.0 km	1.5 km

（㗟）•感知器ベース速結端子の適合電線は Φ O． $9 \sim 1.2 \mathrm{Cu}$（銅）単線になります。
－未使用配線（余剰配線，感知器等未接続配線）が接続されている場合，伝送トラブルの原因となります ので，必ず接続を外してください。
－フロア配線の同ーシース内の電線に異なる感知器伝送線複数系統の配線を混在させないでください。 （未使用系統配線（感知器等未接続配線）の場合でも絶対に混在させないでください。）
－建屋をわたる伝送線については，シールドが必要です。
（処理方法については「6－5．伝送線シールドの処理方法」を参照してください）

6．伝送線について

6－3．使用電線種類（1）受信機一端末機器間

受信機

$*$ ○は端子を表します
※1：外部伝送線と，伝送線（感知器伝送線，中継器伝送線）を同ーシース線に混在させないでください。
※2：外部伝送線，伝送線（ 感知器伝送線，中継器伝送線）と，電話線を同一シース線に混在させないでください。
※3：建屋をわたる伝送線（感知器伝送線，中継器伝送線）については，シールドが必要です。処理方法については「6－4．伝送線シールドの処理方法」を参照してください。

使用電線については，所轄消防署と十分打ち合わせを行って ください。
※4：12系統以上の受信機の一般発信機応答線の接続は「7－3．発信機応答線接続時の注意事項 について」を参照してください。
※5：副表示機（オプション）の接続方法は「9－3．副表示機の接続について」を参照してください。
※ E ：RXコントローラ（オプション）の接続方法は「9－5．RXコントローラの接続について」を参照してください。

6．伝送線について

6－4．伝送線シールドの処理方法

6－4－1．中継器伝送線，感知器伝送線

中継器伝送線，感知器伝送線については，建屋をわたる場合，必ず耐熱ケ一ブル（ツイストペアシールド付）を使用し，シールド線を接地する必要があります。

シールドの処理方法は以下にしたがって行ってください。
伝送線のシールドは，途中の中継器盤及び最終端では接地せずに，受信機にて一点ア一スとしてください。

7．受信機～感知器について

7－1．感知器配線系統図

※1：一般発信機（アドレスアダプタ接続用）及びPX 発信機の応答線の接続は「7－3．発信機応答線の接続について」 を参照してください。
※2：RXアドレスアダプタ（NCH576EX）を使用した場合には光電式分離型感知器のトラブル信号の検出は行えません。光電分離型感知器のトラブル信号を検出する場合の接続方法については「8－11．光電式分離型感知器の接続 について」を参照してください。
※3：PX発信機（NYM119CF等）を接続する場合，発信機にAC端子が無いため，受信機のAC端子とP型自動試験中継器 に供給している電源のコモン（CC）端子を接続してください。
（接続方法は50ページを参照してください。）

7．受信機～感知器について

7－2．アイソレータ中継器の接続について

－アイソレータ中継器（NCH534EX）

※1：12系統以上の受信機の一般発信機応答線の接続は「7－3．発信機応答線接続時の注意事項について」 を参照してください。
（汪）短絡検出時のアイソレータ機能を損なう為，アイソ レータの直列接続は行わないでください。

7．受信機～感知器について

7－3．発信機応答線の接続について

－発信機応答線接続時の注意事項について

伝送線と発信機応答線の接続組み合わせが誤っていると，発信機の発信機発報が処理できなくなりますので，必ず，下記内容に従って，伝送線と発信機応答線を接続してください。

発信機応答線の接続組み合わせ

\cdot 受信機1面目からの感知器伝送線（SA1，SB1～SA8，SB8），中継器伝送線（NA1，NB1•NA2，NB2）に接続されている発信機（アドレスアダプタ接続用）及びPX発信機の発信機応答線は，受信機1面目内のA1，AC～A3，ACのいずれかに，接続してください。（ PX 発信機にはAC端子はありません。）
－受信機2面目からの感知器伝送線（SA9，SB9～SA16，SB16），中継器伝送線（NA3，NB3•NA4，NB4）に接続されている発信機（アドレスアダプタ接続用）及びPX発信機の発信機応答線は，受信機2面目内のA4，AC～A6，ACのいずれかに，接続してください。（ PX 発信機にはAC端子はありません。）

【誤った接続組み合わせの例（発信機（アドレスアダプタ接続用）】
受信機1面目 受信機2面目

アドレスアダプタ，
一般R型中継器

伝送線端子台
伝送線2端子台
NA1，NB1
NA2，NB2
SA1，SB1
SA8，SB8
A1，AC
A2，AC
A3，AC

伝送線 3 端子台
伝送線 4 端子台
NA3，NB3
NA4，NB4
SA9，SB9
SA16，＇SB16
A4，AC
A5，AC
A6，AC

アドレスアダプタ，
一般R型中継器
またはP型自動試験中継器

発信機 （アドレスアダプタ接続用）

発信機応答線
（A＊，AC）
アドレスアダプタ等が接続 されている伝送線端子台以外からの発信機応答線の接続は禁止です。
【適切な接続組み合わせの例（発信機（アドレスアダプタ接続用）】

7．受信機～感知器について

7－3．発信機応答線の接続について

【適切な接続組み合わせの例（ PX 発信機）】

（淮）－• P 発信機はP型自動試験中継器 2 次側にしか接続できません。
－PX 発信機（NYM119CF等）を接続する場合，発信機にAC端子が無いため，受信機 のAC端子とP型自動試験中継器の電源コモン（CC）を接続してください。

－発信機応答灯に対する電流制限機能の設定について

受信機の制御線端子台には，発信機応答線（A線）を接続した発信機に対する発信機応答灯の電流を制限する機能を設定 する「発信機応答灯 電流制限設定SW（JP2）」があります。
（制御線端子台の配置は4－1．内器配置図を参照してください。）
出荷時設定は電流制限「あり」の設定となっています。
受信機にP型自動試験中継器を接続する場合は，必ず出荷時設定（電流制限「あり」）のままで使用してください。 ただし，接続する発信機によっては，複数の発信機を操作した際に，発信機応答灯の明るさが若干暗くなる場合があります。受信機にP型自動試験中継器を接続しない場合に限り，「発信機応答灯 電流制限設定SW（JP2）」を電流制限「なし」側に変更することにより，発信機応答灯の明るさを変更することが可能です。

発信機応答灯電流制限設定SW（JP2）

あり

7．受信機～感知器について

7－4．R型火災表示灯の接続について

－R型火災表示灯2型（パナソニック（株製BVR9401）
図中のRX感知器A，B，アドレスアダプタA，Bについては47ページの「接続可能な感知器，アドレスアダプタ」を参照してください。

- 適応感知器ベース：NSY509EH ．NSY509FH
- 複数の感知器で1つの火災表示灯2型を点灯することができます。
（但し，RX感知器AまたはアドレスアダプタAとRX感知器BまたはアドレスアダプタBの混在使用はできません。）
－R型火災表示灯4型（パナソニック（株製BVR9402）
図中のRX感知器A，B，アドレスアダプタA，Bについては47ページの「接続可能な感知器，アドレスアダプタ」を参照してください。

- 適応感知器ベース：NSY509EH ．NSY509FH
- 複数の感知器で1つの火災表示灯4型を点灯することができます。
（ R X感知器AまたはアドレスアダプタAとRX感知器BとアドレスアダプタBの混在使用が可能です。）

7．受信機～感知器について

7－4．R型火災表示灯の接続について

－接続可能な感知器，アドレスアダプタ

$R X$ 感知器A

－定温式スポット型感知器
NST014EG60，NST114EG70，NST015EN60，NST115EN70
－差動式スポット型感知器
NSP211EG
－旧光電式スポット型感知器
HSS103EG，HSS209EG，HSS402EG，HSS511EG，HSS309EG，HSP104EG －光電式分離型感知器

パナソニック株製BVR4571，パナソニック株製BVR4572，パナソニック株製BVR4570K
$R X$ 感知器 B
－光電式スポット型感知器
NSS108EG，NSS221EG，NSS314EG，NSS407EG，NSS516EG，NSS517EG
－熱アナログ式スポット型感知器
NST511EG，NST512EN

アドレスアダプタA

NCH535EXA
アドレスアダプタB
NCH576EX

7．受信機～感知器について

7－5．アドレスアダプタ4回線用の接続について

＜アドレス設定方法＞
：速結端子
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。 （アドレス設定器（NSY452またはNSY501）の取扱説明書を参照してください。）
これにより設定アドレス (n) と設定アドレス $+1, ~+2, ~+3(n+1, ~ n+2, ~ n+3)$ が自動的に設定されます。
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注；アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アドレスマスク方法＞

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス記入欄の番号
1 （左側）	2 （右側）		
OFF	OFF	$n, n+1, n+2, n+3$	$\mathrm{n}=$（1）, $\mathrm{n}+1=$（2）, $\mathrm{n}+2=$（3）, $\mathrm{n}+3=$（4）
ON	OFF	$n, n+1, n+2$	$n=$（1），$n+1=$（2），$n+2=$（3）
OFF	ON	$\mathrm{n}, \mathrm{n}+1$	$n=(1), n+1=(2)$
ON	ON	n ※1	$\mathrm{n}=$（1）

※ $1: n+1, ~ n+2, ~ n+3$ のアドレスマスク設定
＜接続方法＞
（淮），感知器は必ず送り配線接続をし，終端抵抗（ 10 k 』 1 W ）を接続してくだきい。

－受信機汎用電源（F＋，CC）の電流容量制限について
（注）受信機1台あたりの一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用の接続数が下記の式を満足しない場合は，汎用電源（F＋，CC）の容量が不足するため，別電源からの電源供給が必要となります。

```
(1)+(2)+(3)\leqq700(mA)
(1)一般感知器使用時の監視時消費電流
    =22\times(一般R型中継器(4回線)とアドレスアダプタ4回線用の接続数)
        +58\times(P型自動試験中継器4回線用の接続数)
    (2)一般感知器使用時の5回線発報時消費電流=215 (mA)
    (3)一般R型中継器(4回線), アドレスアダプタ4回線用, P型自動試験中継器4回線用以外の機器の総消費電流(mA)
```


7．受信機•～感知器について

7－6．P型自動試験中継器4回線用の接続について

－P型自動試験中継器4回線用（NCH573EX）

＜アドレス設定方法〉
アドレス設定時には（F＋－CC）端子への電源供給（DC24V）が必要です。
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，中継器用コードを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。 （アドレス設定器（NSY452またはNSY501）の取扱説明書を参照してください。）
これにより設定アドレス（ n ）と設定アドレス $+1, ~+2, ~+3(n+1, ~ n+2, ~ n+3)$ が自動的に設定されます。上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注；アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アドレスマスク方法＞

ON ：上側 OFF：下側

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス記入欄の番号
1 （左側）	2 （右側）		
OFF	OFF	$n, n+1, n+2, n+3$	$n=(1), n+1=$（2），$n+2=$（3），$n+3=$（4）
ON	OFF	$\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$	$n=$（1），$n+1=$（2），$n+2=$（3）
OFF	ON	$\mathrm{n}, \mathrm{n}+1$	$n=(1), n+1=$（2）
ON	ON	n ※1	$\mathrm{n}=$（1）

※ $1: n+1, ~ n+2, ~ n+3$ のアドレスマスク設定
＜接続方法＞
－感知器は必ず送り配線接続をし，終端抵抗（10k $\Omega 1 \mathrm{~W}$ ）を接続してください。
（アドレス付終端器（NSY453），5． $1 \mathrm{k} \Omega$ の終端抵抗等は使用できません。）
－P型自動試験中継器2次側の感知器コモン線を共通配線にする場合，原則，同一中継器内（最大4回線）のみにしてください。 （システム動作に影響があるため。）

- PX感知器，PX発信機に設定するアドレスは1～30としてください。また，PX感知器（2信号）（NSS409EG）は接続できません。
- PX発信機（NYM119CF等）を接続する場合，発信機にAC端子が無いため，受信機（または）のAC端子とP型自動試験中継器の電源コモン（CC）を接続してください。

P型自動試験中継器4回線用（NCH573EX）

＊○は端子を表します。
（注；受信機汎用電源（F＋，CC）の電流容量制限について
受信機1台あたりの一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用の接続数が下記の式を満足しない場合は，汎用電源（F＋，CC）の容量が不足するため，別電源からの電源供給が必要となります。
（1）＋（2）＋（3）$\leqq 700(\mathrm{~mA})$
（1）一般感知器使用時の監視時消費電流（終端抵抗10k Ω 時）
$=22 \times$（一般R型中継器（4回線）とアドレスアダプタ4回線用の接続数）
$+58 \times(P$ 型自動試験中継器4回線用の接続数）（mA）
（2）一般感知器使用時の5回線発報時消費電流 $=215$（mA）
（3）一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用以外の機器の総消費電流（mA）

7．受信機～感知器について

7－7．リニューアル中継器4回線用の接続について

－リニューアル中継器4回線用（NCH566EX）

－自火報制御線（F＋，CC（－））は 24 V 電源を切った状態で接続してください（中継器が故障することがあります）。 －Ln，Cn回線は中継器への電源（ 24 V ）を切った状態で接続してください（感知器が故障することがあります）。

＜アドレス設定方法＞

8．受信機～中継器について

8－1．中継器配線系統図

（䜃）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。

※ 自動試験システムの場合，地区音響回線に専用終端器（NYY915）が必要です。

8．受信機～中継器について

8－2．ガス漏れ中継器2回線用の接続について

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。
－ガス漏れ中継器2回線用（NCH553EX）

＜アドレス設定方法＞
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注！アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。

＜接続方法＞

＊Oは端子を表します。

接続ガス漏れ中継器

- ガス漏れ表示灯（NCH606FX）は検知器 1 個又はガス漏れ中継器 1 個に対して 1 個接続できます。
- ガス漏れ中継器（NCH605FX05）1個／1回線

8．受信機～中継器について

8－3．地区音響中継器2回線用（自動試験機能付）の接続について

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。
－地区音響中継器2回線用（NCH560EX）

＜アドレス設定方法＞
園；速結端子
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注）アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜接続方法＞
（注）地区音響装置は必ず当社指定のものを使用し，送り配線接続をしてください。

※1 自動試験システムの場合，地区音響回線に専用終端器（NYY915）が必要です。

8．受信機～中継器について

8－4．監視中継器の接続について

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。

アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
これにより設定アドレス (n) と設定アドレス $(n+1)$ が自動的に設定されます。
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注；アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アドレスマスク方法＞

－	ON ：上側
2	OF

＜接続方法＞

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス 記入欄の番号
1 （左側）	2（右側）		
OFF	未使用	$\mathrm{n}, \mathrm{n}+1$	$\mathrm{n}=(1), \mathrm{n}+1=(2)$
On		$\mathrm{n} \times 1$	$\mathrm{n}=(1)$

$※ 1: n+1$ のアドレスマスク設定

＊○は端子を表します。

監視中継器4回線用（NCH558EX）作動確認灯

アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
中継器用コードを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注’アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜接続方法＞
上記監視中継器8回線用を参考にしてください。

8．受信機～中継器について

8－5．移信中継器の接続について

（氺）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。

＜アドレス設定方法＞
アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
中継器用コードを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
これにより設定アドレス (n) と設定アドレス $(n+1)$ が自動的に設定されます。
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（淮）アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アドレスマスク方法＞

ON ：上側
OFF：下側
＜接続方法＞

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス記入欄の番号
1 （左側）	2 （右側）		
OFF	未使用	$\mathrm{n}, \mathrm{n}+1$	$n=(1), n+1=$（2）
ON		n ※1	$\mathrm{n}=$（1）

※1：n＋1のアドレスマスク設定

＊○は端子を表します。
許容電流 DC30V 2A（無電圧接点出力）
－移信中継器4回線用（NCH562EX）

＜アドレス設定方法＞
園；速結端子
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注！アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。

＜接続方法＞

上記移信中継器8回線用を参考にしてください。

8．受信機～中継器について

8－6．防排煙中継器4回線用の接続について

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。
接続後，受信機を起動し中継器をリセットさせてください。

- 防排煙中継器4回線用（NCH555EX）作動碓認灯

＜アドレス設定方法＞
围；速結端子
アドレス設定時には上記アドレス設定用コネクタ（4P）を抜き，
中継器用コードを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。 （アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注）アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜接続方法＞

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。
＇接続後，受信機を起動し中継器をリセットさせてください。

＜アドレス設定方法〉
アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
围；速結端子
中継器用コードを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
これにより設定アドレス (n) と設定アドレス $(n+1)$ が自動的に設定されます。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注）アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アデレスマスク方法＞
ON：上側
OFF：下側
＜接続方法＞

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス記入欄の番号
1 （左側）	2 （右側）		
OFF	未使用	$\mathrm{n}, \mathrm{n}+1$	$n=$（1）,$n+1=$（2）
ON		n ※1	$\mathrm{n}=$（1）

$※ 1: n+1$ のアドレスマスク設定

（淮）復帰型端末に逆起防止用ダイオードが内蔵されていない場合は端末側に逆起防止用ダイオードを接続してください。

8．受信機～中継器について

8－8．一般R型中継器4回線用の接続について

（淮）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。
－一般R型中継器4回線用（NCH554EX）

＜アドレス設定方法〉
アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
これにより設定アドレス (n) と設定アドレス $(n+1)$ が自動的に設定されます。
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（注）アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。
＜アドレスマスク方法＞
D ON ：上側

アドレスマスク用 スイッチ番号		設定アドレス	対応するアドレス記入欄の番号
1（左側）	2（右側）		
OFF	夫使用	$\mathrm{n}, \mathrm{n}+1$	$n=(1), n+1=$（2）
ON		n ※1	$\mathrm{n}=$（1）

＜接続方法＞
（注）感知器は必ず送り配線接続をし，終端抵抗（ $10 \mathrm{k} \Omega 1 \mathrm{~W}$ ）を接続してください。

＊○は端子を表します。

> - 感知器接続個数
> 「5-4. 感知器接続数」参照
（㴤；受信機汎用電源（F＋，CC）の電流容量制限について
受信機1台あたりの一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用の接続数が下記の式を満足しない場合は，汎用電源（F＋，CC）の容量が不足するため，別電源からの電源供給が必要となります。
（1）$+(2)+(3) \leqq 700(\mathrm{~mA})$
（1）一般感知器使用時の監視時消費電流（終端抵抗 $10 \mathrm{k} \Omega$ 時）
$=22 \times$（一般 R 型中継器（4回線）とアドレスアダプタ4回線用の接続数）
$+58 \times$（ P 型自動試験中継器4回線用の接続数）(mA)
（2）一般感知器使用時の5回線発報時消費電流 $=215$（ mA ）
（3）一般R型中継器（4回線），アドレスアダプタ4回線用，P型自動試験中継器4回線用以外の機器の総消費電流（mA）

8．受信機～中継器について

8－9．火災表示灯3型の接続について

（注，中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してくだきい。接続後，受信機を起動し中継器をりセツトさせてください。
－火災表示灯3型（パナリニック株製BV9403K）

1．従来の3線式ベース（パナリニック株製BV4920）との混在使用はできません。
2．LAは確認灯回路を示します。
3． S とLを短絡したり極性をあやまらないでください。
4．定温式スポット防水型の場合は3線式を使用してください。
5．火災表示灯3型用の $24 V$ 電源は，必ず受信機の火災復旧出力接点（Irb，Irc）を経由させて配線してください。 （経由させていないと，火災復旧操作時に火災表示灯が消灯しません）
6．一般R型中継器の代わりにアドレスアダプタ4回線用が接続できます。

8．受信機～中継器について

8－10．中継リレ—1型の接続について

－中継リレ—1型（パナソニック（株製BV9475）

（淮）1．LAは確認灯回路を示します。
2．SとLを短絡したり極性をあやまらないでください。
3．中継リレー1型用の $24 V$ 電源は，必ず受信機の火災代表出力接点（Fa，Fc）を経由させて配線してください。
4．一般R型中継器の代わりにアドレスアダプタ4回線用が接続できます。
5．P型自動試験中継器の 2 次側に中継リレー 1 型は接続できません。

8．受信機～中継器について

8－11．光電式分離型感知器の接続について

（浪）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をりセツトさせてください。
－光電式分離型感知器（NSL103EX，NSL204EX）

＊○は端子を表します。

光電式分離型感知器のトラブル信号を検出する場合の注意事項
1．外部制御線（F＋•CC（－））と監視制御線（DA＋•CC（－））は必ず同じ制御線端子台から接続してください。
2．アドレスアダプタ4回線用（NCH557EX）の代わりに一般R型中継器（NCH554EX）やP型自動試験中継器（NCH573EX） を使用した場合でもトラブル信号の検出ができます。
但し，アドレスアダプタ（NCH576EX）を使用した場合は，監視中継器経由でのトラブル信号の検出はできません。
3．トラブル信号を接続した監視中継器の回線は光電式分離型感知器のトラブル信号用としてテーブル登録してください。
4．光電分離型感知器は次のような場合にトラブル信号を出力しますが，トラブル内容の詳細は表示できません。

- 窓汚れがいちじるしく，清掃の必要がある場合。
- 内部回路に異常が発生した場合。
- 光軸がずれてしまった場合。

8．受信機～中継器について

8－12．地区音響中継器2回線用（自動試験機能無）の接続について

（堃）中継器は必ず受信機の電源（AC100V）を切り予備電源を外してから接続してください。接続後，受信機を起動し中継器をリセットさせてください。
－地区音響中継器2回線用（自動試験機能無）（NCH561EX）

＜アドレス設定方法＞
围；連結端子
アドレス設定時には上記アドレス設定コネクタ（4P）を抜き，
中継器用コ一ドを接続してアドレス設定器（NSY452またはNSY501）にて設定してください。
（アドレス設定器（NSY452またはNSY501）取扱説明書を参照してください）
上面のアドレス記入欄に設定したアドレスを消えないように記入してください。
（雔）’アドレス設定後は必ず上記アドレス設定用コネクタ（4P）を確実に接続してください。

＜接続方法＞

（注）地区音響装置は必ず当社指定のものを使用し，送り配線接続をしてください。

＊Oは端子を表します。
\qquad

9．受信機～周辺機器について

9－1．地図式，グラフィツクパネル（オプション）の接続について
9－1－1．表示基板，地図式（オプション）を使用する

9．受信機～周辺機器について

9－1－2．グラパネユニット（オプション），分離型A端子台（オプション）を使用する

9．受信機～周辺機器について

9－1－3．移信端子台を使用する

9．受信機～周辺機器について

9－2．P型1級用副受信機の接続について

9．受信機～周辺機器について

9－3．副表示機の接続について

使用電線および接続数
－副表示機伝送線
シールド付ツイストペアケ一ブル
Ф1．2－1pr

- 電話線
- 般配線 2C
- 最大接続数

双方向 31台
（双方向副表示機は15台まで受信機から個別呼出ができます）
片方向 100台
（注）•副表示機伝送線と受信機～中継器•受信機～感知器間の伝送線は，別シースにしてください。

配線長

－双方向通信 最遠配線長：500m以内 （受信機と最も遠い副表示機の間の距離）全体の総配線長：1500m以内
－片方向通信 機器間配線長： 500 m 以内（分岐配線合計 500 m 以内）全体の総配線長：2000m以内

受信機RS485終端設定箇所
＊Oは端子台を表します。

受信機扉内側図

9．受信機～周辺機器について

－終端抵抗スイッチの設定と配線長（双方向通信の場合）

（1）双方向通信の送り配線の場合

終端抵抗スイッチの設定

\square 受信機
－RS485終端スイッチを「ON」側で使用してください。

\square 副表示機

－最遠でない副表示機を全てTB1•TB2を「OFF」側にし
最遠のみTB1を「ON」側にしてください。

〈配線長〉
$\mathrm{A}+\mathrm{B}+\mathrm{C} \leqq 500 \mathrm{~m}$

3分岐まで接続できます）

終端抵抗スイッチの設定

\square 受信機

－RS485終端スイッチを「ON」側で使用してください。

\square 副表示機

－最遠配線長の副表示機2台のTB1 を「ON」，TB2を「OFF」側にし， その他の副表示機を全てTB1•TB2を「OFF」側にしてください。

例1）受信機分岐する場合（配線長：A＋B＋C＞F＞D＋E）
最遠長の副表示機6と副表示機3の終端抵抗スイッチと受信機のRS485終端スイッチを「ON」してください。

9．受信機～周辺機器について

例2）受信機と副表示機で分岐する場合（配線長：$A+B+C>D+F>D+E)$
最遠配線長の副表示機6と副表示機5の終端抵抗スイッチと受信機のRS485終端スイッチを「ON」してください。

－終端抵抗スイッチの設定と配線長（片方向通信の場合）

（1）片方向通信の送り配線の場合
終端抵抗スイッチの設定
口受信機
RS485終端スイッチを「ON」側で使用してください。
口副表示機
TB1，TB2を全て「ON」側にしてください。
〈配線長〉

9．受信機～周辺機器について

（2）片方向通信の分岐配線の場合
終端抵抗スイッチの設定
■受信機
－RS485終端スイッチを「ON」側で使用してください。

口副表示機

- 全ての副表示機のTB2を「ON」側にしてください。
- 受信機及び副表示機からの分岐配線で最遠（配線長が長い）

の副表示機の終端抵抗スイッチTB1を「ON］側にし，同分岐内の
他の副表示機のTB1は「OFF」側にしてください。
－受信機及び副表示機からの配線が分岐されていない（送り配線）
の場合は，接続副表示機のTB1は「ON」側にしてください。
※分岐配線の配線長が同じ場合，いずれか1台のTB1を「ON」側
にしてください。

例）受信機と副表示機で分岐する場合（配線長：$A<B<C, ~ F<G$ ）
各分岐で最遠長の副表示機の終端抵抗スイッチ［TB1］と受信機のRS485終端スイッチを「ON」してください。

9．受信機～周辺機器について

9－4．IFユニットの接続について
1）IFユニットを全て受信機内に設置する場合

100 ： 100Ω 抵抗が接続してあります。

- IFユニットは最大 3 台接続できます。
- 制御線端子台と最終のIFユニットに接続されている 100Ω 抵抗は外さないでください。
＜注意＞
外部制御F＋•CC（－）の容量はDC27V 700mAです，IFユニット1台当たりの消費電流は約100mAになります。
他の用途にもF＋•CC（－）を使用する場合はご注意ください。

9．受信機～周辺機器について

2）IFユニットを全て受信機外部に設置する場合
＜線種および接続数＞
－伝送線
耐熱ケーブル（ツイストペアシールド付）Φ 1．2－1pr 2C
但し，列盤でかつ床下配線でない場合はHP線（シールド無）でも可

－電源線

電源用ケーブルまたはOP線
－最大接続台数 3台
＜配線方法＞
接続図
－配線長
$\mathrm{L} 1 \leqq 15 \mathrm{~m}$

9．受信機～周辺機器について

100 ：付属の 100Ω 抵抗をLA－LB間に接続してください。
＜b：バス型 2＞

－総配線長
$\mathrm{Lb} 1+\mathrm{Lb} 2+\mathrm{Lb} 3 \leqq 0.5 \mathrm{~km}$

50』：付属の 100Ω 抵抗 2 個をLA－LB間に並列接続してください。

9．受信機～周辺機器について

3）IFユニットを一部受信機外部に設置する場合

＜線種および接続数＞（受信機外は下記線を使用してください）

－伝送線

耐熱ケーブル（ツイストペアシールド付）Φ 1．2－1pr 2C
但し，列盤でかつ床下配線でない場合はHP線（シールド無）でも可

－電源線

電源用ケーブルまたはOP線
\cdot 最大接続台数（受信機内 + 受信機外部）
3台

＊○は端子台を表します。
＜注意＞
外部制御F＋•CC（－）の容量はDC27V700mAです，IFユニット1台当たりの消費電流は約100mAになります。
他の用途にもF＋•CC（－）を使用する場合はご注意ください。

9．受信機～周辺機器について

9－5．RX コントローラの接続について

9－5－1．配線図

9．受信機～周辺機器について

9－5－2．RX コントロ一ラ配置図

9．受信機～周辺機器について

9－5－3．RXコントローラを使用してグラフィツクパネルを接続

9．受信機～周辺機器について

9－5－4．RXコントローラを使用して諸警報入力機器を接続


```
·総配線長
    L\leqq15m
-使用電線
    RS232Cコネクタ
    変換ケ一ブル
```


－RXコントローラ1台あたり，最大400入力まで増設可能です。
（4系統使用時）
－シリアル1ポートあたり，最大100入力まで増設可能です。
（諸警報ユニット（30入力単位）が最大 4 台まで増設可能）

10．受信機～他設備について

10－1．受信機～非常放送設備の接続について

＊○は端子台を表します。
（倠）•受信機の「非常放送連動停止」が有効になる様に移信端子台のコモン（IC1～IC2O）をITb1，ITc1を通して配線します。
－移信端子台の標準回線は，2•4系統：15回線，6～18系統：30回線です。
標準回線数以上は移信増設端子台（オプション）を使用してください。（最大100回線）
－移信出力内容は，受信機の連動テーブルの設定により決定されます。

10－2．受信機～他設備の接続について

（空調機制御盤，誘導付信号装置）

－受信機端子台からの移信

火災代表移信 $\binom{\text { 無電圧c接点出力 }}{\text { DC30V } 1 \mathrm{~A}}$	Fa1 O Fb1 O Fc1 O
火災代表移信 $\binom{\text { 無電圧c接点出力 }}{\text { DC30V 1A }}$	$\begin{array}{ll} \text { Fa2 } & \mathrm{O} \\ \mathrm{Fb} 2 & \mathrm{O} \\ \mathrm{Fc} 2 & \mathrm{O} \end{array}$
火災代表移信 $\binom{\text { 無電圧c接点出力 }}{\text { DC30V 1A }}$	
ガス漏れ代表移信 $\binom{\text { 無電圧a接点出カ }}{\text { DC30V }}$	GFa O GFc O
ガス故障代表移信 $\binom{\text { 無電圧a接点出カ }}{\text { DC30V 1A }}$	$\begin{aligned} & \text { GTa O } \\ & \text { GTc } O \end{aligned}$
火災断定移信 $\binom{\text { 無電圧c接点出カ }}{\text { DC30V 1A }}$	$\begin{array}{ll} \mathrm{KDa} & \mathrm{O} \\ \mathrm{KDb} & \mathrm{O} \\ \mathrm{KDc} & \mathrm{O} \end{array}$
故障代表移信 $\binom{\text { 無電圧a接点出力 }}{\text { DC30V 1A }}$	$\begin{aligned} & \text { TFa O } \\ & \text { TFc O } \end{aligned}$

この端子からは，受信機連動テーブル の設定と無関係に代表出力します。

移信端子台

\begin{tabular}{|c|c|}
\hline \multirow{7}{*}{移信
$$
\binom{\text { 無電圧a接点出力 }}{\text { DC30V 1A }}
$$} \& $\begin{array}{cc}11 & O \\ 2 & \\ 15 & 0\end{array}$

\hline \& IC1 O

\hline \& $\begin{array}{cc}16 & O \\ 2 & \\ 110 & 0\end{array}$

\hline \& IC2 O

\hline \& 2

\hline \& 126

130
130

\hline \& IC6 \bigcirc

\hline
\end{tabular}

＊○は端子台を表します。

【移信停止】
共通端子台

移信停止1 （非常放送専用） $\binom{\text { 無電圧b接点出カ }}{\text { DC30V } 1 \mathrm{~A}}$	$\begin{array}{ll}\text { ITb1 } & \mathrm{O} \\ \text { ITc1 } & \mathrm{O}\end{array}$
移信停止2 $\binom{\text { 無電圧b接点出カ }}{\mathrm{DC} 30 \mathrm{~A}}$	$\begin{array}{ll} \text { ITb2 } & O \\ \text { ITc2 } & \text { O } \end{array}$
移信停止3 $\binom{\text { 無電圧b接点出カ }}{\mathrm{DC} 30 \mathrm{~A}}$	$\begin{array}{ll} \text { ITb3 } & O \\ \text { ITc3 } & \text { O } \end{array}$

移信停止を有効にする為には，設備用の移信コモンを移信停止端子台を通して配線してください。
＊Oは端子台を表します。

10．受信機～他設備について

10－3．受信機～消火栓起動盤の接続について

－受信機端子台からの移信

共通端子台

消火栓起動 （AC24V有電圧入力）	$\begin{array}{ll} \mathrm{HL1-1} & \mathrm{O} \\ \mathrm{HL} 2-1 & \mathrm{O} \end{array}$		
消火栓始動 $\binom{\text { 無電圧a接点出力 }}{\text { DC30V 1A }}$	$\begin{array}{ll} \hline \mathrm{H} 1-1 & \mathrm{O} \\ \mathrm{H} 2-1 & \mathrm{O} \\ \hline \end{array}$	HA HC	消火栓起動盤1

消火栓増設端子台（オプション）

消火栓起動 （ AC 24 V 有電圧入力）	HL1－2 O HL2－2 O	$-5 \begin{aligned} & \mathrm{HL1} \\ & \mathrm{HL2} \end{aligned}$	
$\begin{aligned} & \text { 消火栓始動 } \\ & \binom{\text { 無電圧a接点出カ }}{\text { DC30V } 1 \mathrm{~A}} \end{aligned}$	$\begin{array}{ll} \mathrm{H} 1-2 & \mathrm{O} \\ \mathrm{H} 2-2 & \mathrm{O} \end{array}$	$-2 \mathrm{HA}$	消火栓起動盤2
2			$\}$
消火栓起動 （ AC 24 V 有電圧入力）	$\begin{array}{ll} \mathrm{HL1} 1-7 & \mathrm{O} \\ \mathrm{HL} 2-7 & \mathrm{O} \end{array}$	$\left\{\begin{array}{l} \mathrm{HL1} \\ \mathrm{HL2} \end{array}\right.$	
消火栓始動 $\binom{$ 無電圧a接点出力 }{ DC30V 1A }	$\begin{array}{ll} \mathrm{H} 1-7 & \mathrm{O} \\ \mathrm{H} 2-7 & \mathrm{O} \end{array}$	HA	消火栓起動盤7

＊○は端子台を表します。

標準系統数（1系統）以上は消火栓増設端子台（オプション）を使用してください。（最大13系統）

10．受信機～他設備について

10－4．2号消火栓の接続について

受信機に，2号消火栓のフックスイッチ（マイクロスイッチ）を入力し連動させる場合は，
アドレスアダプタの2次側に下記の様に接続してください。
中継端子台は消火栓BOX，中継器盤等に取り付けてください。

1．マイクロスイッチは2接点必要です。（L－C間，A－AC間）
2．擬似抵抗は $560 \Omega 3 W$ のものをご使用ください。
3．L－Cラインの終端には，アドレスアダプタに同梱の終端器を接続してください。
4．伝送線（感知器伝送線，中継器伝送線）と電話線を同ーシース線に混在させないでください。
5．一般発信機応答線接続は「7－3．発信機応答線接続時の注意事項について」を参照してください。

11．施工後の確認方法

トラブルが発生している場合，トラブル内容の確認•処置をしてください。

1．トラブル確認•処置 取扱説明書「3－6．トラブル発生時の動作」を参照してください。
「6．異常時の点検－処置」を参照してください。
施工説明書「12．トラブル一覧」を参照してください。

－受信機は，下記の試験をしてください。

1．火災試験
2．ガス漏れ試験
3．一斉試験
4．予備電源試験
5．防排煙個別制御
6．移信個別制御
7．消火栓個別制御

取扱説明書「9－2．操作画面 試験•制御 火災試験」を参照してください。取扱説明書「9－2．操作画面 試験•制御 ガス漏れ試験」を参照してください。取扱説明書「8－7．操作画面 基本操作 一斉試験」を参照してください。取扱説明書「9－2．操作画面 試験•制御 予備電源試験」を参照してください。取扱説明書「 $9-2$ ．操作画面 試験•制御 個別制御」を参照してください。取扱説明書「9－2．操作画面 試験•制御 個別制御」を参照してください。取扱説明書「9－2．操作画面 試験•制御 個別制御」を参照してください。

受信機は，下記の時刻を設定してください。
1．現在時刻 取扱説明書「8－1．管理者画面 時刻設定」を参照してください。
2．自動試験時刻 取扱説明書「8－1．管理者画面 時刻設定」を参照してください。

－接続した感知器は下記動作試験をしてください。

詳細は，各試験器に付属の取扱説明書を参照してください。
1．熱感知器（差動式•定温式スポット型）の場合は，加熱試験器で加熱試験をしてください。
2．煙感知器（光電式スポット型）の場合は，加煙試験器で加煙試験をしてください。
3．煙感知器（光電式分離型）の場合は，感度試験フィルターで動作試験をしてください。
4．受信機側で火災発報して感知器の読み換え番号，メッセージ，感知器種別等が正しいか確認してください。（火災発報時のプリンタ印字で確認できます）

－絶縁耐圧試験，絶縁抵抗試験をする場合

－外部配線相互間の絶縁試験を行う場合は，感知器，終端抵抗，受信機の外部配線を外してから行ってください。

- 受信機の絶縁耐圧試験を行う場合は，非常放送設備への配線を外してから行ってください。
- 受信機の絶縁耐圧試験を行う場合は，電源のコネクタ（CN2，CN5O）および100V入力部のFG線 を外してから試験を行ってください。

－トラブルが発生した場合，施工店または点検契約店に連絡してください。
（トラブルの内容は受信機のトラブル画面にて確認してください。「要因表示」でも確認できます。）

トラブルの種類	トラブルの内容	確認－処置方法
交流電源断	－交流電源が供給されていません。 1．交流電源スイッチが＂切＂側である。 2．停電が発生している。 3．交流電源スイッチ部のヒューズ（AF1，AF2） が切れている。	1．交流電源スイッチを＂入＂側にしてください。 2．交流電源の入力を確認してください。 3．ヒューズ（AF1，AF2）を交換してください。
主回路電圧異常	電源の主回路電圧が異常です。 1．予備電源動作で予備電源の電圧が低下 している。 2．電源の出力が低下している。	1．交流電源を供給し，予備電源を充電して ください。 2．電源コニットを交換してください。
受信機動作不能 （LED全点灯状態）	受信機の主回路電圧が約17V以下に なっている。 （交流電源断時に予備電源が長時間放電 した際，発生することがあります。）	交流電源を供給し，予備電源を充電して ください。 ※主回路電圧異常が復旧（予備電源電圧が約20．4V以上になる）するまでトラ゙ル状態 を保持します。
予備電源異常	予備電源の異常が発生している。 1．予備電源の接続コ神多が外れている。 2．電源コニットのヒューズ（AF3～AF7）が切れている。	1．予備電源の接続コ祊夕を確認してください。 2．電源コニットのヒューズ（AF3～AF7）を交換 してください。
電源FAN異常	電源コニット内の電源FANに異常が発生 している。 1．電源FANが障害物により回転を妨げら れている。 2．電源FANが故障している。	1．障害物を取り除き一斉試験を実施して ください。 2．電源コニットを交換してください。 ※一斉試験，自動試験時の電池試験で試験良 となるまでトラブル状態を保持します。
予備電源試験不良	予備電源試験で試験不良になった。 1．予備電源の接続コ祊が外れている。 2．予備電源の電圧が低下している。	1．予備電源の接続コ神夕を確認してください。 2．十分に充電したのち再度不良の場合は，予備電源を交換してください。 ※一斉試験，予備電源試験，自動試験時に試験良となるまでトラブル状態を保持します。
ヒューズ断線	－受信機のヒューズ（F1～F7）が切れている。	－制御線ユニットのヒューズ（F1～F6）を確認 してください。 －伝送線コニットのヒューズ（F7）を確認して ください。 －切れたヒューズを交換してください。
非常放送配線断	非常放送～受信機間の配線が異常です。 1．非常放送配線が断線している。 2．非常放送設備配線の終端抵抗が外れて いる。	1． $\mathrm{EB}+\mathrm{EB}$－の配線を確認してください。 2．非常放送設備配線の終端抵抗を確認して ください。
プリンタ異常	プリンタの異常が発生しています。 1．プリンタ用紙が紙切れしている。 2．プリンタとの交信が不能である。 3．プリンタが故障している。	1．プリタタ用紙を交換してください。 2．受信機～プリンタ間ケーブルを確認して ください。 3．プリンタを交換してください。

12．トラブルー覧

－トラブルが発生した場合，施工店または点検契約店に連絡してください。
（トラブルの内容は受信機のトラブル画面にて確認してください。「要因表示」でも確認できます。）

トラブルの種類	トラブルの内容	確認－処置方法
受信機UT異常	－受信機内部UT（※1）との交信が不能 となっている。 1．受信機内部UT間の配線に異常が発生 している。 2．受信機内部UTに異常が発生している。	1．受信機内部UT間のヶーブルの接続を確認して ください。 2．電源を再投入しても，動作しない場合，受信機内部Uをを交換してください。
受信機UT余分	－登録外の受信機内部UT（※1）が接続されている。 1．アドレス設定が間違っている。 2．連動テーブルの登録が間違っている。 3．受信機内部UTが余分に接続されている。	1．アドレスを確認してください。 2．連動テーブルを確認してください。 3．余分な受信機内部UTを取り外してください。 ※トラブル状態は電源の再投入まで保持します。
外部電源異常	－外部電源（※2）の異常が発生している。	- 外部電源の交流電源の電圧を確認してください。 - 外部電源の交流電源スイッチを入れてください。 - 上記以外の場合は，外部電源を交換してください。
外部ヒューズ断	－外部電源（※2）のヒューズが切れています。	- 外部電源内のヒューズを確認してください。 - 切れたヒューズを交換してください。
外部電源試験不良	－外部電源（※2）の試験が不良になった。 1．外部電源の予備電源が外れています。 2．外部電源の予備電源電圧が低下しています。	1．予備電源の接続コネクタを確認してください。 2．十分に充電したのち再度不良の場合は，予備電源を交換してください。 ※ 一斉試験，予備電源試験，自動試験の試験良までトラブル状態を保持します。
メモリ異常	－受信機の内部〈モリに異常が発生している。	プリンタで印字された該当コニットを交換して ください。 ※トラブル状態は電源の再投入まで保持します。
伝送CPU異常	端末メインユニットは端末サブ コニットの伝送 CPUとの交信が不能となっている。	プリンタで印字された該当コニットを交換して ください。 ※トラブル状態は電源の再投入まで保持します。
伝送線短絡	－受信機と $R X$ 感知器，RX中継器（※3）間 の伝送部が短絡している。 1．伝送線が短絡している。 2．アイルータとRX感知器間が短絡している。 3．RX感知器が短絡モードで故障している。	1．受信機と $R X$ 感知器，$R X$ 中継器間の配線を確認してください。 2．アイルータとRX感知器間の配線を確認して ください。 3．RX感知器を交換してください。 ※アイリータの伝送線短絡は，配線の短絡復旧後， アイルータ2次側接続操作を行うまで保持します。 ※アイルータ1次側の伝送線短絡が発生した場合，「伝送線短絡」トラブルは表示せず，「伝送不良」トラブルを表示します。
伝送不良	－RX感知器，RX発信機，RX中継器（※3） との交信が不能となっている。 1．アドレス設定が間違っている。 2．$R X$ 感知器，$R X$ 発信機，$R X$ 中継器間の配線 が断線している。 3．伝送線が短絡している。	1．アドレス設定を確認してください。 2．配線を確認してください。 （ R X感知器，RX発信機，RX中継器が接続 されているかを確認してください。） 3．受信機と R X感知器，RX発信機，RX中継器間の配線を確認してください。

※1：受信機内部UTとは，共通コニット・移信ユニット・その他オプションユニットになります。
※2：外部電源とはオプションの防災用直流電源装置等になります。
※3：RX中継器にはP型自動試験中継器を含みます。
－トラブルが発生した場合，施工店または点検契約店に連絡してください。
（トラブルの内容は受信機のトラブル画面にて確認してください。「要因表示」でも確認できます。）

トラブルの種類	トラブルの内容	確認－処置方法
伝送不良（余分）	－登録外のRX感知器，RX発信機，RX中継器 （※3）が接続されている。 1．アドレス設定が間違っている。 2．連動テーブ ルの登録が間違っている。 3．RX感知器，RX発信機，RX中継器が余分に接続されている。	1．アドレス設定を確認してください。 2．連動テーブルを確認してください。 3．余分な $R X$ 感知器，$R X$ 発信機，$R X$ 中継器を取り外してください。 ※中継器伝送線の129アドレス以降のRX中継器 の余分接続は電源を再投入するまで トラブル状態を保持します。 ※以下のアドレスに誤設定された場合には 伝送不良（余分）トラブルは検出しません。〔アドレス付感知器（発信機）〕 128アドレス～254アドレス 〔アイッレータ〕 128アドレス～200アドレス
伝送不良（予約） （※4）	－PX端末またはRX感知器（予約登録種別） との交信が不能である。 1．意図した動作の場合：不要なPX端末またはRX感知器の取り外し ができた。 2．意図しない動作の場合：感知器配線が断線している等が考えら れます。	1．意図した動作の場合： 受信機で予約登録削除操作をしてください。 （取扱説明書参照） 2．意図しない動作の場合： 感知器の配線，アドレス等を確認してください。
余分接続（予約）	－PX端末またはRX感知器（予約登録種別） を接続した。 1．意図した動作の場合：必要なPX端末またはRX感知器が接続 できた。 2．意図しない動作の場合： PX端末またはRX感知器のアドレス設定が間違っている等が考えられます。 －P型自動試験中継器が接続されている。 3．アドレス設定が間違っている等が考えられ ます。	1．意図した動作の場合： 受信機で予約登録操作をしてください。 （取扱説明書参照） 2．意図しない動作の場合： PX端末またはRX感知器のアドレス設定が間違っていないか，確認してください。 3．P型自動試験中継器は予約登録種別には できません。アドレス設定が間違っていな いか，確認してください。
感知器誤設定	－AD1～AD30以外のPX端末が誤接続されて いる。	該当の感知器回線のPX端末アド しスを確認して ください。
感知器異常 $(※ 5)$	－RX感知器，PX感知器の異常が発生 している。	感知器を交換してください。
種別異常 $(※ 5) \quad(※ 6) \quad(※ 7)$	－TG登録と異なる種別のRX感知器， RX発信機，アドレスアダプタ，P型自動試験中継器が接続されている。 1．アドレス設定が間違っている。 2．連動テーブルの登録が間違っている。 3．異なる種別の感知器が接続されている。	1．アドレスを確認してください。 2．連動テーブルを確認してください。 3．正しい感知器を取りつけてください。 ※トラブル状態復旧後，復旧スイッチを押すまで トラブル状態を保持します。

※3：RX中継器にはP型自動試験中継器を含みます。
※4：PX端末との通信が行えない状態（L－C間短絡等）でP型自動試験中継器を起動させた場合，伝送不良（予約）トラブルを検出する事が有ります。
※5：伝送不良発生時には，その端末からの個別のトラブル信号も途絶えるため伝送不良以外の個別のトラブルは表示しなくなります。
※6：種別異常のトラブルが復旧した後に正しい感知器を接続してください。
（誤って接続した感知器を外して伝送不良を発生させた後，復旧スイッチを押すと種別異常のトラブルが復旧します。）
尚，PX端末については種別情報を検出しません。
※7：連動テーブルにアナログ感知器が登録されているアドレスに，誤って，アドレスアダプタ，P型自動試験中継器，アドレス発信機，アイリレータ等 を誤接続した場合，受信機が火災を誤検出する場合があります。
－トラブルが発生した場合，施工店または点検契約店に連絡してください。
（トラブルの内容は受信機のトラブル画面にて確認してください。「要因表示」でも確認できます。）

トラブルの種類	トラブルの内容	確認－処置方法
感知器汚れ3 $(※ 5)$	－RX感知器，PX感知器が㭒リ等で汚れ，非火災報が発生しやすい状態になっている。	感知器を清掃または交換してください。
2次側配線断 （※5）	一般感知器回線が断線している。 1．アドレスアダプタ，P型自動試験中継器また は一般R型中継器2次側の一般感知器回線が断線している。 2．終端器，終端抵抗が外れている。	1．一般感知器回線の配線を確認してください。 2．終端器，終端抵抗を確認してください。
火災試験不良 （※5）	－火災試験の結果が不良になっている。 1．感知器が伝送不良状態になっている。 2．感知器が故障している。 3．感知器が汚れ3の状態になっている。 4．光電式分離型感知器が分離トラブル状態 になっている。	1．感知器を確認してください。 2．感知器を交換してください。 3．感知器を清掃または交換してください。 4．光軸調整等をしてください。 ※交換後に再度火災試験を行ってください。
制御線異常 $(\cdots 5)$	－RX中継器（※3）への監視電源（F＋，DA＋） が供給されていない。 1．受信機～RX中継器間の配線が断線して いる。 2．制御線ユニットのヒューズ（F2，F3）が切れて いる。	1．制御線の配線を確認してください。 2．制御線コニットのヒューズ（F2，F3）を確認して ください。
ガス検知器故障 （※5）	ガス検知器の異常が発生している。 1．ガス検知器電源が供給されていない。 2．がス検知器が接続されていない。 3．がス検知器が故障している。	1．がス検知器電源および配線を確認して ください。 2．がス検知器の接続を確認してください。 3．ガス検知器を交換してください。
ガス漏れ試験不良 （※5）	ガス漏れ試験が不良になっている。 1．がス検知器が故障している。 2．がス漏れ中継器が不良状態になっている。	1．ガス検知器を交換してください。 2．がス漏れ中継器を確認してください。 ※交換後に再度がス漏れ試験を行ってください。
地区音響線断線 （※5）	－地区音響線が断線している。 1．地区音響中継器～地区べル間が断線 している。 2．音響装置用終端器が外れている。 3．地区音響制御出力電圧が低下している。	1．地区音響中継器～地区ベル間の配線を確認 してください。 2．終端器を確認してください。 3．地区音響出力電圧（ $\mathrm{B}+$ ）を確認して ください。
地区音響線短絡 （※5）	地区音響線が短絡している。 1．地区音響中継器～地区ベル間が短絡 している。 2．地区音響中継器が故障している。	1．地区音響中継器～地区ベル間の配線を確認 してください。 2．地区音響中継器を交換してください。
伝送不良（返信）	○RX感知器，RX発信器，RX中継器（※3） の返信信号が異常状態になっている。 1．アドレスが重複している。 2．配線が地絡している。	1．アドレスを確認してください。 2．感知器伝送線を確認してください。 ※トラブル状態復旧後，復旧スイッチを押すまで トラブル状態を保持します。
伝送不良（割込） （※5）	－RX感知器，RX発信機，RX中継器（※3） の異常が発生している。	$R X$ 感知器，$R X$ 発信機，$R X$ 中継器を交換して ください。 作動が検知できない恐れがあります。

※3：RX中継器にはP型自動試験中継器を含みます。
※ 5 ：伝送不良発生時には，その端末からの個別のトラブル信号も途絶えるため伝送不良以外の個別のトラブルは表示しなくなります。

12．トラブルー覧

－トラブルが発生した場合，施工店または点検契約店に連絡してください。
（トラブルの内容は受信機のトラブル画面にて確認してください。「要因表示」でも確認できます。）

トラブルの種類	トラブルの内容	確認－処置方法
周辺機器異常	－周辺機器との交信が不能である。 1．副表示機，防災CRT等と交信が不能である。 2．受信機～IFコニット間またはRX コントローラ間の配線が断線している。	1．副表示機，防災CRT等を確認して ください。 2．受信機～IFコニット間または，RXコントロ－ラ間の配線を確認してください。
テーブル不一致	伝送コニット（火災，端末）のデーブル内容 が受信機テーブルと一致しない。	連動テーブルの転送にてデーブル内容を一致 させてください。
分離トラブル	－光電式分離型感知器の異常が発生 している。 1．光軸がずれている。 2．光電式分離型感知器が故障している。	1．光軸調整をしてください。 2．光電式分離型感知器を交換してください。
ユニット異常	－伝送コニット（火災，端末）との交信が不能 である。 1．受信機内の配線が断線している。 2．12系統以上の受信機（2面体）において，受信機2面目が動作していない。 3．該当コニットが故障している。	1．受信機内の配線を確認してください。 2．受信機2面目の電源投入状態を確認して ください。 3．故障したコニットを交換してください。
処理盤動作不能	12系統以上の受信機（2面体）において，受信機2面目の主回路電圧が約17V以下 になっています。 （交流電源断時に予備電源が長時間放電 した際，発生することがあります。）	受信機2面目に交流電源を供給し，予備電源 を充電してください。 ※主回路電圧異常が復旧（予備電源電圧が 20．4V以上になる）するまでトラブ ル状態を保持します。
伝送路A異常	－受信機内の配線が断線•短絡している。	受信機内の配線を確認してください。
諸警報作動	設定データで登録した外部機器が故障信号 を送信しています。	該当機器の確認をお願いします。
LON CPU異常	－受信機内の基幹伝送（LON伝送）が異常 になっている。 1．受信機内の配線にノイズがのっている。 2．通信用CPU（LON CPU）が故障している。	1．受信機内の配線を確認してください。 2．該当のLON CPUが搭載されたコニットを交換して ください。

MEMO

MEMO

